Shaoyun Wang

573-489-9584 | shaoyunwang@missouri.edu | Google Scholar | Website

Education	
University of Missouri PhD, Mechanical Engineering Dissertation: "Wave propagation in elastic time-varying media"	Columbia, MO Expected Jul. 2025
Ningbo University MS, Theoretical Physics Dissertation: "Simulation of mixing charged brushes under external electric fields"	Ningbo, China Sep. 2016 – Jun. 2019
Ningbo University BS, Engineering Mechanics	Ningbo, China Sep. 2012 – Jun. 2016
Research Experience	
 University of Missouri Wave propagation in time-varying media (Prof. Guoliang Huang) Utilize the WKB method to develop ray theory for wave propagation in time-varying Observe temporal refraction and reflection of flexural waves Establish the Chern number of k-bands and design a platform to observe temporal e Develop adiabatic theory and design structures for observing topological pumping of 	Jan. 2020 – Present g media edge modes f surface waves
 Non-Hermitian and topological physics (Prof. Guoliang Huang and Emil Prodan) Design active metamaterials to achieve odd mass density Develop theoretical frameworks of topological mode and skin mode in non-Hermitian Design elastic structures to observe spectral flow with Frieze Group symmetries 	a lattices
 Developing homogenization theory for lattice and active Materials (Prof. Guolia Formulate source-driven homogenization for active non-Hermitian Willis metabeams Develop the homogenization theory of lattice material through micro-inertia media Create a 2D microtwist theory for modeling hinged Kagome lattices 	ang Huang)
Use FEA to study multiphysics fields of soft materials and electronics (Prof. Zhen Simulate large deformation, contact interactions, thermal-flow couplings, and multi-	neng Yan and Jian Lin) phase flow dynamics
 Ningbo University Molecular dynamics and Monte Carlo simulation of charged brushes (Prof. Cha Develop comprehensive MD and MC programs in Fortran, each consisting of nearly Develop a cell list algorithm for MC simulation, incorporating particle creation and a 	2016 – 2019 aohui Tong) 5000 lines of code annihilation
 Mindlin plate theory with temperature biasing field (Prof. Ji Wang) Identify optimal quartz cuts for stable temperature performance Investigate the aging behavior of quartz resonators 	
Teaching Experience	
 Teaching Assistant, University of Missouri MAE 3100: Computational methods for engineering design (Prof. Hussein Nassar) Lead interactive MATLAB coding, using coding examples and whiteboard to explain Assist students in completing programming projects, providing guidance and code reference. Facilitate Q&A sessions to address student queries and reinforce their understanding 	2022 – 2024 a complex concepts. eviews. g of course material.
MAE 4990: Undergraduate research in mechanical and aerospace engineering (Prof. Mich	ael Poehlman) 2021

• Guide students in conducting research projects, providing advice and answering questions.

Undergraduate Capstone Project Advisor, University of Missouri

Designing jumping shoes by using lattice structures (Prof. Guoliang Huang)

- Provide theoretical advising on designing principle and guide students in mathematical modeling.
- Assist in building CAD models, conducting FEA simulations, and validating designs by MTS and DIC systems.

Spring 2021

Selected Publications

Wang, S., & Huang, G. A source-driven homogenization of active non-Hermitian Willis metabeam. In preparation.

Wang, S., Zhu, R., & Huang, G. Micro-inertia Continuum Modeling of Macroscopic Behavior of Elastic Metamaterials with Microstructures. In preparation.

Wang, S., Shao, N., Chen, H., Chen, J., Qian, H., Wu, Q., & Huang, G. Temporal refraction and reflection in modulated mechanical metabeams: theory and physical observation. To be submitted.

Wu, Q., Wang, S., Qian, H., Wang, Y., & Huang, G. (2024). Understanding of topological mode and skin mode morphing in 1D and 2D non-Hermitian resonance-based meta-lattices. Journal of the Mechanics and Physics of Solids, 105907. <u>PDF</u>

Zhao, G., Chen, Z., Wang, S., Chen, S., Zhang, F., Andrabi, S. M., ... & Yan, Z. (2024). Sustainable Nanofibril Interfaces for Strain-Resilient and Multimodal Porous Bioelectronics. Advanced Materials, 2411587. <u>PDF</u>

Lux, F. R., Stoiber, T., **Wang, S.**, Huang, G., & Prodan, E. (2024). Topological spectral bands with frieze groups. Journal of Mathematical Physics, 65(6). <u>PDF</u>

Zheng, B., Xie, Y., Xu, S., Meng, A. C., **Wang, S.**, ... & Lin, J. (2024). Programmed multimaterial assembly by synergized 3D printing and freeform laser induction. Nature Communications, 15(1), 4541. <u>PDF</u>

Wang, S., Hu, Z., Wu, Q., Chen, H., Prodan, E., Zhu, R., & Huang, G. (2023). Smart patterning for topological pumping of elastic surface waves. Science Advances, 9(30), eadh4310. <u>PDF</u>

Wu, Q., Xu, X., Qian, H., Wang, S., Zhu, R., Yan, Z., ... & Huang, G. (2023). Active metamaterials for realizing odd mass density. Proceedings of the National Academy of Sciences, 120(21), e2209829120. <u>PDF</u>

Chen, H., Wang, S., Li, X., & Huang, G. (2022). Two-dimensional microtwist modeling of topological polarization in Kagome lattices and its experimental validation. International Journal of Solids and Structures, 254, 111891. <u>PDF</u>

Wang, S., & Tong, C. (2020). Surface switching of mixed polyelectrolyte brushes made of 4-arm stars and linear chains: MD simulations. Journal of Applied Physics, 127(7). (Editor's pick) <u>PDF</u>

Xie, L., Wang, S., Ding, J., Banerjee, J. R., & Wang, J. (2020). An accurate beam theory and its first-order approximation in free vibration analysis. Journal of Sound and Vibration, 485, 115567. <u>PDF</u>

Zhang, F., Wang, S., Ding, H., & Tong, C. (2019). Simulations of 3-arm polyelectrolyte star brushes under external electric fields. Soft Matter, 15(12), 2560-2570. (Back cover) <u>PDF</u>

Awards & Achievements

Second Place in the ASME Noise Control and Acoustics Division Student Paper Competition	2023
Student best paper finalists, Academic Forum of Mechanics between Ningbo University and Zhejiang University	2018
Student best paper finalists, Symposium on Piezoelectricity Acoustical Theory and Device Application	2016

Presentations

Topological surface acoustic wave, International Mechanical Engineering Congress Exposition, New Orleans Oct. 2023 Smart patterning for topological pumping of surface waves, SPIE Smart Structures + NDE, Los Angeles Mar. 2023

Skills

Languages: MATLAB, Fortran, Python, Jupyter, C/C++, Latex, HTML/CSS Software: COMSOL, ANASYS, ABAQUS, SOLIDWORKS, Multisim, Simulink Hardware: Mircocontroller, Electric Circuits, DIC, MTS Testing Machine, Laser Vibrometers

References

Professor Guoliang Huang College of Engineering Peking University Beijing 100871, PR China 573-953-8845 guohuang@pku.edu.cn Professor Emil Prodan Department of Physics and Department of Mathematical Sciences Yeshiva University New York, New York 10016 212-340-7831 prodan@yu.edu Professor Zheng Yan Chemical and Biomedical Engineering and Mechanical and Aerospace Engineering University of Missouri Columbia, MO 65211 573-884-0562 YanZheng@missouri.edu