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Abstract

Unlike classical elasticity, Willis media exhibit coupling between stress–velocity and momentum–strain, capturing

additional dynamic interactions in heterogeneous systems. While previous studies have predominantly focused on

the homogenization of passive Willis media, extending these concepts to active systems remains largely unexplored.

In this work, we employ an nonlocal Willis dynamic homogenization for active metabeams that integrates sen-

sor–actuator pairs into a background beam to induce nonreciprocal coupling. By employing a source-driven homoge-

nization approach, our EMT accurately captures the full dispersion curves over the entire Brillouin zone—overcoming

the limitations of static or long-wavelength theories—and enables the definition of a winding number for the frequency

spectrum under periodic boundary conditions (PBC). imaginary part, continuum media Notably, our framework

predicts the emergence of low-frequency shear waves, absent in traditional beam theory, and facilitates direction-

dependent wave amplification and attenuation. Through asymptotic analysis, we determine the frequency spectrum

under open boundary conditions (OBC) and reveal its relationship to the periodic spectrum, with the resulting eigen-

modes (skin modes) exhibiting pronounced edge localization that can be characterized by the generalized Brillouin

zone (GBZ). Furthermore, we establish a bulk–boundary correspondence (BBC) that links the winding number to

the localization direction of skin modes, providing a practical alternative to directly computing the GBZ. Finally, we

demonstrate applications in nonreciprocal filtering, amplification, and interface-localized energy harvesting, paving

the way for next-generation active mechanical metamaterials with tailored wave functionalities.
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1. Introduction1

Momentum, a conserved quantity proportional to the product of density and velocity, arises as a consequence of2

spatial homogeneity according to Noether’s theorem (Landau et al., 1976; Goldstein et al., 2002). In contrast,3

the stress-strain relation—stating that stress is proportional to an elastic constant times strain—is an empiri-4

cal law characterizing specific material behavior (Landau et al., 1986). Despite their differing physical origins,5

momentum–velocity and stress-strain pairs share a fundamental similarity: they both act as conjugate variables6

in the Lagrangian formalism. Classical elasticity treats them independently, but Willis media introduce cross-7
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couplings—termed Willis couplings—between momentum and strain, as well as stress and velocity, modifying con-8

ventional elastic behavior (Willis, 1981, 1997). These couplings necessitate new homogenization methods including9

Green’s function methods and field averaging (Willis, 2009, 2011, 2012; Milton and Willis, 2010; Nemat-Nasser and10

Srivastava, 2011; Shuvalov et al., 2011; Norris et al., 2012; Srivastava, 2015; Nassar et al., 2015), asymptotic ho-11

mogenization (Nassar et al., 2016), perturbative expansions combined with field averaging (Qu et al., 2022; Milton,12

2007), and mode expansion with subspace projection (Ponge et al., 2017; Pernas-Salomón and Shmuel, 2018). Such13

approaches have extended Willis couplings to acoustics (Muhlestein et al., 2017; Li et al., 2022, 2024) and piezoelec-14

tricity (Pernas-Salomón and Shmuel, 2020b; Pernas-Salomón et al., 2021; Pernas-Salomón and Shmuel, 2020a; Lee15

et al., 2023; Baz, 2024; Muhafra et al., 2023). However, homogenization in active systems, where artificial couplings16

arise, remains challenging. Source-driven homogenization (Sieck et al., 2017) offers a systematic framework for incor-17

porating background media and scatterers, making it a promising approach for studying active systems. This study18

extends source-driven homogenization to a non-Hermitian Willis metabeam with sensor-actuator elements, breaking19

major symmetry (Fig. 1). We develop an effective medium model that captures high-frequency and short-wavelength20

wave behavior, advancing both theoretical and practical understanding of active Willis materials.21

Willis media, derived from homogenization theory, exhibit unique properties that drive advanced metamaterial22

design. In cloaking, transformed media extend beyond classical elasticity and align with the Milton–Briane–Willis23

gauge (Milton et al., 2006; Chen and Haberman, 2023). Willis coupling enables asymmetric reflection (Liu et al., 2019;24

Muhlestein et al., 2017) and precise control over polarization, mode conversion, wavefront shaping, and independent25

reflection/transmission tuning (Qu et al., 2022; Chen et al., 2020; Li et al., 2018). While most studies focus on passive26

Willis systems, integrating active elements, particularly sensor–actuator pairs, leads to novel effects like direction-27

dependent wave amplification (Cheng and Hu, 2022) and nonreciprocal wave propagation (Zhai et al., 2019). Despite28

these advances, key aspects such as non-Hermiticity, topology (bulk–boundary correspondence), symmetry properties,29

and space–time duality remain largely unexplored (Christensen et al., 2024; Yves et al., 2024; Ashida et al., 2020;30

Galiffi et al., 2022).31

In classical elasticity, material properties remain constant (Landau et al., 1986), whereas metamaterials exhibit32

frequency-dependent properties, enabling effects like bandgaps (Huang et al., 2009) and negative refraction (Zhu33

et al., 2014). Willis media extend this by introducing both temporal nonlocality (frequency dispersion) and spatial34

nonlocality (spatial dispersion). While spatial dispersion is well-established in optics—leading to anisotropic prop-35

agation, gyrotropy, and directed energy flow (Agranovich and Ginzburg, 2013; Shokri and Rukhadze, 2019)—it is36

uncommon in elasticity. In structured elastic media, it couples material properties to both frequency and wavenum-37

ber, altering wave interactions. For free waves, effective properties follow dispersion relations, but external loads that38

depend on both parameters can excite waves with arbitrary frequencies and wavenumbers. This nonlocality is cru-39

cial for capturing high-frequency and short-wavelength behavior, essential for understanding spectral topology under40

PBCs and skin modes under OBCs. However, it also complicates boundary value problems by requiring nonlocal41

boundary conditions.42

Non-Hermitian systems have advanced significantly since Carl Bender’s discovery that PT-symmetric non-Hermitian43

operators can have entirely real eigenvalues (Bender and Boettcher, 1998), challenging the notion that Hermiticity is44

necessary for real spectra (Sakurai and Napolitano, 2017) and expanding research in non-Hermitian physics (Bender45
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and Hook, 2024). Varying non-Hermitian couplings induces PT-symmetry breaking, leading to a phase transition46

from real to complex eigenvalues (Ashida et al., 2020). At the transition point (exceptional point), eigenvalues and47

eigenvectors coalesce, enabling novel effects such as enhanced sensor sensitivity and unconventional laser modes (Miri48

and Alu, 2019). Simultaneously, the study of topological insulators, rooted in bulk-boundary correspondence, faces49

challenges in non-Hermitian systems due to the breakdown of Bloch band theory. This leads to non-Bloch band50

theory and the discovery of the non-Hermitian skin effect (Yao and Wang, 2018), which establishes a new form of51

bulk-boundary correspondence linking the winding number of the complex frequency spectrum under PBC to skin52

modes under OBC (Okuma et al., 2020; Zhang et al., 2020). Many quantum non-Hermitian findings extend naturally53

to classical wave systems, including electromagnetic and acoustic waves, due to their shared mathematical frame-54

work—eigenvalue problems in the Hilbert space. Non-Hermitian skin modes appear in elastic systems (Chen et al.,55

2021), interface modes in metaplates (Wang et al., 2024), and bulk-boundary correspondence in discrete systems (Wu56

et al., 2024). However, a systematic exploration of the frequency spectrum under both PBC and OBC, particularly57

the role of the GBZ in governing skin modes and extending bulk-boundary correspondence to nonlocal non-Hermitian58

Willis systems, remains an open question.59

Elastic beams with piezoelectric patches and integrated circuitry serve as a versatile platform for studying un-60

conventional elastic waves. They enable observations of the non-Hermitian skin effect (Chen et al., 2021), odd mass61

density (Wu et al., 2023), temporal reflection (Wang et al., 2025), frequency conversion (Wu et al., 2022), and topo-62

logical pumping (Xia et al., 2021). Beam models also advance Willis media research, from dynamic homogenization63

of inhomogeneous Euler–Bernoulli beams (Pernas-Salomón and Shmuel, 2018) to parameter retrieval in Timoshenko64

beams with multiple scatterers (Liu et al., 2019; Chen et al., 2020). However, developing a complete EMT for active65

Timoshenko beams with multiple scatterers remains an open challenge.66

Motivated by the microstructure design in Chen et al. (2020), we introduce non-Hermiticity into a background67

beam by embedding sensor–actuator pairs that generate nonreciprocal coupling. Employing a source-driven homoge-68

nization method, we develop an effective medium theory for nonlocal non-Hermitian Willis metabeams. This theory69

accurately reproduces the full dispersion curves over the entire Brillouin zone—overcoming the limitations of static70

or long-wavelength homogenization approaches—and enables the definition of a winding number for the spectrum71

under PBC. Moreover, our framework predicts the emergence of a low-frequency shear wave, absent in traditional72

beam theory, and facilitates nonreciprocal wave amplification and attenuation. Through asymptotic analysis, we73

calculate the frequency spectrum under OBC and reveal its relationship to the spectrum under PBC. The resulting74

eigenmodes, or skin modes, under OBC exhibit pronounced edge localization, whose extent can be characterized by75

the GBZ derived from the asymptotic analysis. Furthermore, we establish a rigorous bulk–boundary correspondence76

for nonlocal non-Hermitian Willis media, elucidating the interplay between the winding number and skin modes; this77

correspondence allows one to determine the localization direction of the skin modes using the winding number rather78

than the computationally challenging GBZ. Finally, we demonstrate practical applications—including nonreciprocal79

filters and amplifiers and interface-localized energy harvesting—paving the way for the next generation of active80

mechanical metamaterials with tailored wave functionalities.81

This paper is organized as follows. Section 2 presents the source-driven homogenization approach for nonlocal82

non-Hermitian Willis metabeams with embedded sensor-actuator elements. Section 3 validates the proposed EMT83
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Figure 1: Possible constitutive operators in elastodynamics with broken major symmetry. The broken major symmetry of the elastic
tensor C(ω, k) ̸= CT (−ω,−k), density tensor ρ(ω, k) ̸= ρT (−ω,−k), and Willis coupling tensor B(ω, k) ̸= DT (−ω,−k) leads to the
non-Hermitian media.

by comparing theoretical dispersion predictions with COMSOL simulations across various parameter regimes. Sec-84

tion 4 analyzes key wave phenomena, including low-frequency shear waves, nonreciprocal wave amplification and85

attenuation, asymptotic analysis of the open-boundary spectrum, and bulk–boundary correspondence. Section 5 ex-86

plores practical applications such as nonreciprocal filtering, amplification, and interface-localized energy harvesting.87

Finally, Section 6 summarizes the main findings and outlines future research directions. Additional derivations and88

supporting materials are provided in the Appendices.89

2. Effective medium theory of nonlocal non-Hermitian Willis metabeam90

In this section, we apply EMT to derive the effective constitutive relations for a metabeam embedded with91

sensor-actuators (Fig. 2(a)). The homogenization process is illustrated in Fig. 2(b), where sensors and actuators92

are modeled as embedded scatterers. We first introduce the Timoshenko beam equations (Section 2.1), forming the93

theoretical foundation. The background beam response under external sources (Fig. 2(b), top panel) is analyzed in94

Section 2.2, followed by the effective medium response (Fig. 2(b), bottom panel) in Section 2.3. The total response95

(Fig. 2(b), middle panel), comprising the microscale local response (Section 2.4) and mesoscale multiple scattering96

effects (Section 2.5), leads to the derivation of the effective constitutive relations (Section 2.6). Finally, we formulate97

the nonlocal governing equations and boundary value problem (BVP) in Section 2.7.98

2.1. Fundamental Equations of the Timoshenko Beam99

Consider a Timoshenko beam characterized by mass density ρ, Young’s modulus E, and shear modulus G. The100

material’s response is governed by the balance of linear momentum µ and angular momentum J (Yao et al., 2009;101

Chen et al., 2020)102

∂tµ = ∂xF + f,

∂tJ = ∂xM + F + q,
(1)

where F denotes the shear force, M represents the bending moment, and f and q correspond to the external body103

torque and transverse body force, respectively. The bending curvature κ, shear strain γ, rotational angle ψ, and104
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Figure 2: Schematic illustration of the EMT for a metabeam and its associated wave phenomena. (a) The unit cell of the metabeam,
featuring a sensor (blue) and four actuators (light gray) in the top panel. The middle panel depicts a finite metabeam consisting of
10 unit cells, while the bottom panel presents its effective medium representation as a nonlocal non-Hermitian Willis metabeam. (b)
A schematic diagram illustrating the wave responses in different configurations: the top panel shows the response of the background
beam, the middle panel includes periodic scatterers embedded in the background beam, and the bottom panel represents the response of
the homogenized effective beam, all under external excitation (blue arrow). (c–f) Demonstrations of various phenomena of the nonlocal
non-Hermitian Willis metabeam: (c) low-frequency shear wave propagation, (d) nonreciprocal wave amplification and attenuation, (e)
the non-Hermitian skin effect, and (f) the non-Hermitian interface mode.

transverse displacement w satisfy the following geometric relations (Yao et al., 2009; Chen et al., 2020)105

κ = ∂xψ + p

γ = ∂xw − ψ + s,
(2)
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where p and s represent the external curvature load and shear load, respectively. The general constitutive relation106

of the Timoshenko beam is given by (Yao et al., 2009; Chen et al., 2020)107


κ

γ

µ

J

 =


1/D0 0 0 0

0 1/G0 0 0

0 0 ρ0 0

0 0 0 I0




M

F

∂tw

∂tψ

 , (3)

where D0 is the bending stiffness, G0 is the shear stiffness, I0 is the moment of inertia, and ρ0 is the line mass density.108

These parameters are defined as D0 = EI, G0 = ksAG, I0 = ρI, and ρ0 = ρA, where A is the cross-sectional area,109

ks is the Timoshenko shear coefficient (taken as 5/6), I is the second moment of area, and ρ is the material density.110

Using Eqs. (1), (2), and (3), the governing equations can be written in matrix form for the state vector111

ζ1u = Q, (4)

where112

ζ1 =


1/D0 0 0 −∂x
0 1/G0 −∂x 1

0 ∂x −ρ0∂2t 0

∂x 1 0 −I0∂2t

 , u =


M

F

w

ψ

 , Q =


p

s

f

q

 . (5)

Meanwhile, Eq. (4) in the frequency domain e−iωt is113

ζ2u = Q, (6)

and in frequency-wavenumber domain ei(kx−ωt) is114

ζu = Q, (7)

where115

ζ2 =


1/D0 0 0 −∂x
0 1/G0 −∂x 1

0 ∂x ω2ρ0 0

∂x 1 0 ω2I0

 , ζ =


1/D0 0 0 −ik

0 1/G0 −ik 1

0 ik ω2ρ0 0

ik 1 0 ω2I0

 (8)

2.2. Response of the background beam under external sources116

Under the external excitation ei(kx−ωt) shown in the top panel of Fig. 2(b), the governing equations for the state117

vector of a homogeneous background beam with external sources in the frequency-wavenumber domain are given by118

(Chen et al., 2020)119

ζuext = Qext, (9)

where the subscript ext denotes the fields in Eq. (7) under external excitation.120
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2.3. Response of the effective metabeam under external sources121

For the background beam with periodic scatterers under external excitation, as shown in the middle panel of Fig.122

2(b), the response consists of the intrinsic behavior of the background beam and multiple scattering effects induced123

by the periodic scatterers. In this setup, actuators generate a source vector, making the scatterers function similarly124

to external sources.125

In the homogenization process, the source vector applied by the actuators is represented as an effective source126

vector Qeff. The governing equations for the state vector of the effective metabeam are then given by (Chen et al.,127

2020)128

ζueff +Qeff = Qext. (10)

Here, Qeff is an unknown vector dependent on the local response at the microscopic scale and the multiple scattering129

effects at the mesoscale, both of which are discussed in the following sections.130

2.4. Local response at microscopic scale131

The sensor-actuator elements detect the local state vector uloc and apply the source vector Q0 to the beam. The132

geometry and material parameters are presented in Appendix A. In our design (Fig. 2(a)), the sensor detects only133

the bending curvature, while four actuators apply the bending moment and shear strain. However, this framework134

can be extended to systems capable of detecting the complete local state vector and applying the full source vector.135

In the frequency domain, the local source vector is related to the local state vector through the polarizability tensor,136

modulated by the transfer functions H1(ω) and H2(ω), as shown in Fig. 2(a) (Chen et al., 2020),137

Q0 = β(ω)uloc. (11)

The tensor β(ω) is a frequency-dependent local polarizability tensor, with only β11 and β21 being nonzero in our138

design, as shown in Fig. 2(a). It is directly linked to the transfer functions implemented via analog or digital circuits139

but cannot be determined analytically. Instead, we obtain it using the retrieval method described in the Appendix140

E.141

As shown in Fig. 2(a), the transfer function defines the relationship between the sensed voltage Vs from the142

sensing piezoelectric patch and the actuator voltages V1 and V2, given by143

V1 = H1(ω)Vs,

V2 = H2(ω)Vs.
(12)

Here, Vs =
∫
A
Dz dA/C0, where A is the top surface area of the sensing piezoelectric patch, Dz is the z-component144

of the electric displacement vector, and C0 is the capacitance, provided in Appendix A. An example of transfer145

function implementation is detailed in Chen et al. (2021).146

In general, a transfer function is expressed as the ratio of two complex polynomials. For instance, the transfer147

functions H1(ω) and H2(ω) in this study can be written as148

Hi(ω) =

∑M
m=0 am,iω

m∑N
n=0 bn,iω

n
, i = 1, 2, (13)
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where M and N are the highest-order indices, and am,i and bn,i are the complex coefficients of the mth and nth149

order terms in the numerator and denominator polynomials of Hi(ω), respectively. The local polarizability tensor150

is not directly proportional to the transfer functions; however, its elements remain rational functions, as indicated151

by our observations and supported by the strong agreement between EMT predictions and COMSOL simulations.152

Consequently, the element in the ith row and jth column can be expressed as153

βij(ω) =

∑M
m=0 ãm,ijω

m∑N
n=0 b̃n,ijω

n
, i, j = 1, 2, 3, 4, (14)

where M and N denote the highest-order indices, and ãm,ij and b̃n,ij are the complex coefficients of the mth154

and nth order terms in the numerator and denominator polynomials of βij(ω), respectively. By leveraging circuit-155

based control, each element can be modulated independently, allowing for the realization of an arbitrary local156

constitutive matrix that encompasses frequency-dependent responses, positive and negative values, real and imaginary157

components, and non-Hermitian configurations.158

2.5. Multiple scattering at mesoscropic scale159

Next, we analyze the multiple scattering effect in the middle panel of Fig. 2(b). Using Eq. (B.18), the state160

vector response at position x due to a point source Q(x′) = δ(x′ − nL)Qn located at x′ = nL is given by161

u(x) = G(ω, x− nL)Qn. (15)

where the Green’s function in the frequency domain is defined in Eq. (B.16).162

The system in this study is periodic, allowing Bloch’s theorem to be applied to all fields, including the source163

vector Qn (Sieck et al., 2017). Therefore, the source vector Qn satisfies164

Qn = eiknLQ0. (16)

Therefore, the total local field uloc at x = 0, excited by all sources, is the superposition of the local fields generated165

by each individual internal source and the external field uext166

uloc = uext +
∑
n∈Z

G(ω, 0− nL)Qn = uext + S(ω, k)Q0, (17)

where the scattering matrix is defined as167

S(ω, k) =
∑
n∈Z

G(ω, 0− nL)eiknL. (18)

Here, the summation includes the current scatter at n = 0, unlike previous studies that exclude it to prevent168

divergence (Li et al., 2024). In our case, the Green’s function remains finite at n = 0. Moreover, removing the169

effect of the current scatter violates the symmetry constraints in Eqs. (33–37) derived from macroscopic theory. By170

applying the symmetry condition of the Green’s function in Eq. (C.6), we find that the scattering matrix S satisfies171
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the following symmetry properties:172

S(ω, k) = S†(ω, k),

S(ω, k) = ST (ω,−k),

S(ω, k) = S∗(−ω,−k).

(19)

Applying Bloch’s theorem to the source vector Qn in Eq. (16), the scattering matrix becomes173

S(ω, k) =
∑
n∈Z

[
R1(−nL)B1(−nL)T e−i|nL|k1eiknL +R2(−nL)B2(−nL)T e−|nL|k2eiknL

]
=R1(1)B1(1)

T

( −1∑
n=−∞

ei(k1+k)nL +
1

2

)
+R1(−1)B1(−1)T

( ∞∑
n=1

ei(k−k1)nL +
1

2

)

+R2(1)B2(1)
T

( −1∑
n=−∞

e(k2+ik)nL +
1

2

)
+R2(−1)B2(−1)T

( ∞∑
n=1

e(ik−k2)nL +
1

2

)

=R1(1)B1(1)
T

(
e−iL(k1+k)

1− e−iL(k1+k)
+

1

2

)
+R1(−1)B1(−1)T

(
eiL(k−k1)

1− eiL(k−k1)
+

1

2

)
+R2(1)B2(1)

T

(
e−L(k2+ik)

1− e−L(k2+ik)
+

1

2

)
+R2(−1)B2(−1)T

(
eL(ik−k2)

1− eL(ik−k2)
+

1

2

)
.

(20)

Here, R1(x), R2(x), B1(x), and B2(x) only depend on the sign of the spatial coordinate x. Therefore, their values at174

x = 1 are used to represent them for positive x, while their values at x = −1 are used to represent them for negative175

x. In the final step, the geometric series is used176

∞∑
n=1

yn = lim
N→∞

N∑
n=1

yn = lim
N→∞

y − yN+1

1− y
. (21)

The series converges only if the common ratio satisfies |y| < 1. Strictly speaking, the magnitude of the common177

ratio is equal to 1, causing the series to diverge. In this study, we directly neglect the divergent term yN+1. This178

approach can be justified by introducing small damping, allowing the wavenumber to have a small imaginary part179

such that the common ratio satisfies |y| < 1 (Sieck et al., 2017; Shore and Yaghjian, 2007). Subsequently, the limit180

is taken as the damping approaches zero. This procedure is also validated a posteriori, as the dispersion relations181

obtained from the effective media closely match those from COMSOL simulation.182

2.6. Effective constitutive relations183

Next, we derive the effective constitutive relations. Eliminating the external excitation from Eqs. (9) and (10)184

gives185

ζ (ueff − uext) = −Qeff. (22)

Additionally, eliminating the local state vector uloc from Eq. (11) and (17) yields186

(I− βS)Q0 = βuext, (23)
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where I is the 4× 4 identity matrix. Additionally, applying spatial averaging, the effective source vector Qeff relates187

to the microscopic point source vector Q0 at x = 0 as (Sieck et al., 2017; Chen et al., 2020; Alù, 2011)188

Qeff =
1

l

∫ l/2

−l/2
δ(x)Q0 dx =

Q0

l
, (24)

where l is the unit cell length. Using Eqs. (22)–(24), we derive the constitutive relation (detailed derivation in the189

Appendix D)190

Qeff = Kueff, (25)

where191

K =
[
lI− lβS− βζ−1

]−1
β. (26)

If β is nonsingular, Eq. (26) simplifies to192

K =
[
lβ−1 − LS− ζ−1

]−1
. (27)

when BD are nonzero In Section 2.4, we establish that the local polarizability matrix β can be an arbitrary frequency-193

dependent but wavenumber-independent matrix. Here, we constrain it to be a real symmetric matrix and an even194

function with respect to ω. Given ζ in Eq. (8), S in Eq. (18), and β as a real even symmetric matrix, they satisfy195

the following symmetry conditions196

ζ(ω, k) = ζ∗(−ω,−k),

ζ(ω, k) = ζ†(ω, k),

ζ(ω, k) = ζT (ω,−k),

S(ω, k) = S∗(−ω,−k),

S(ω, k) = S†(ω, k),

S(ω, k) = ST (ω,−k),

β(ω, k) = β∗(−ω,−k),

β(ω, k) = β†(ω, k),

β(ω, k) = βT (ω,−k).

(28)

Since matrix addition, subtraction, and inversion in Eq. (26) preserve these symmetries, the resulting matrix K also197

satisfies them.198

Substituting Eq. (25) into Eq. (10) in the absence of an external source and comparing it with Eq. (3), we199

propose a general constitutive relation for Willis metabeams in matrix form200 
κeff

γeff

µeff

Jeff

 =


1/D0 +K11 K12 K13/(−iω) K14/(−iω)

K21 1/G0 +K22 K23/(−iω) K24/(−iω)

K31/(−iω) K32/(−iω) ρ0 +K33/(−ω2) K34/(−ω2)

K41/(−iω) K42/(−iω) K43/(−ω2) I0 +K44/(−ω2)




Meff

Feff

veff

φeff

 , (29)

Here, veff and φeff represent the velocity and angular velocity, respectively, satisfying veff = ẇeff and φeff = ψ̇eff in201

the time domain, and veff = −iωweff and φeff = −iωψeff in the frequency domain. Using these relations, we rewrite202

Eq. (29) as203  ε

p

 =

 C B

D ρ

 σ

v

 (30)
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where204

ε =

 κeff

γeff

 , p =

 µeff

Jeff

 , σ =

 Meff

Feff

 , v =

 veff

φeff

 , (31)

and205

C =

 −1/D0 +K11 K12

K21 1/G0 +K22

 , B =

 K13/(−iω) K14/(−iω)

K23/(−iω) K24/(−iω)

 ,
D =

 K31/(−iω) K32/(−iω)

K33/(−iω) K34/(−iω)

 , ρ =

 ρ0 +K33/(−ω2) K34/(−ω2)

K43/(−ω2) I0 +K44/(−ω2)

 .
(32)

Equation (30) represents the effective constitutive relation in compliance form, where B and D are the Willis coupling206

matrices. The constitutive matrices satisfy the following conditions207

C(ω, k) = C∗(−ω,−k),
B(ω, k) = B∗(−ω,−k),

D(ω, k) = D∗(−ω,−k),
ρ(ω, k) = ρ∗(−ω,−k), (33)

208

C(ω, k) = C†(ω, k), B(ω, k) = −D†(ω, k), ρ(ω, k) = ρ†(ω, k), (34)
209

C(ω, k) = CT (ω,−k), B(ω, k) = DT (ω,−k), ρ(ω, k) = ρT (ω,−k), (35)

Using Eq. (33) and Eq. (34), we obtain the following symmetry conditions210

C(ω, k) = CT (−ω,−k), B(ω, k) = DT (−ω,−k), ρ(ω, k) = ρT (−ω,−k), (36)

Furthermore, using Eq. (35) and Eq. (36), we obtain the following symmetry conditions211

C(ω, k) = C(−ω, k), B(ω, k) = B(−ω, k), D(ω, k) = D(−ω, k), ρ(ω, k) = ρ(−ω, k), (37)

These five symmetry conditions are not independent; rather, Eq. (33), Eq. (36), and Eq. (37) serve as the212

fundamental ones in the macroscopic framework, while the remaining two follow from them. Eq. (33) arises from213

the requirement that all physical fields in classical physics be real-valued (Agranovich and Ginzburg, 2013; Shokri214

and Rukhadze, 2019). Eq. (36) represents the major symmetry of Willis materials, while Eq. (37) corresponds to215

time-reversal symmetry (Agranovich and Ginzburg, 2013; Shokri and Rukhadze, 2019; Altman and Suchy, 2011). Eq.216

(35) follows from the Maxwell-Betti reciprocity theorem, which itself derives from major symmetry and time-reversal217

symmetry (Agranovich and Ginzburg, 2013; Shokri and Rukhadze, 2019; Pernas-Salomón and Shmuel, 2020b).218

Our sensor-actuator system can break these symmetry conditions, enabling the realization of unconventional219

symmetry-broken nonlocal Willis media. For instance, breaking time-reversal symmetry requires violating the cor-220

responding symmetry of the polarizability tensor, i.e., β(ω) ̸= β(−ω), which can be achieved by implementing221

odd-frequency-dependent transfer functions. Breaking major symmetry or Maxwell-Betti reciprocity requires a non-222

Hermitian or asymmetric polarizability tensor. By tailoring the polarizability tensor at the microscopic level, EMT223

allows for the engineering of macroscopic media with arbitrary symmetry-breaking properties.224

Here, material properties depend on both frequency and wavenumber, indicating that the Willis metabeam ex-225
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hibits both frequency and spatial dispersion (Agranovich and Ginzburg, 2013). Frequency and wavenumber are226

treated as independent variables, as discussed in Appendix F. In the spacetime domain, these dependencies trans-227

late into nonlocal constitutive relations, which are expressed in convolution form (Agranovich and Ginzburg, 2013;228

Jackson, 2012; Pernas-Salomón and Shmuel, 2020a).229

 ε(t, x)

p(t, x)

 =

∫ t

−∞

∫ ∞

−∞

 C(t, t′;x, x′) B(t, t′;x, x′)

D(t, t′;x, x′) ρ(t, t′;x, x′)

 σ(t′, x′)

v(t′, x′)

 dt′dx′ (38)

If the medium’s properties remain constant over time (time-independent), translational symmetry in the time domain230

is preserved, making the constitutive matrix dependent only on the time difference t− t′ (Agranovich and Ginzburg,231

2013). Similarly, if the medium is spatially uniform, all points are equivalent, and the constitutive matrix depends232

only on the spatial difference x− x′ (Agranovich and Ginzburg, 2013). Under these conditions, we obtain233

 ε(t, x)

p(t, x)

 =

∫ t

−∞

∫ ∞

−∞

 C(t− t′, x− x′) B(t− t′, x− x′)

D(t− t′, x− x′) ρ(t− t′, x− x′)

 σ(t′, x′)

v(t′, x′)

 dt′dx′ (39)

The quantity Ψ, representing ε, p, C, B, D, ρ, σ, and v, is related in real space and reciprocal space through the234

Fourier transform235

Ψ(t, x) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
Ψ(ω, k)ei(kx−ωt) dxdt (40)

and its inverse transform,236

Ψ(ω, k) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
Ψ(t, x)e−i(kx−ωt) dkdω. (41)

Since all wave fields in classical physics are real-valued in real space, the Fourier transform satisfies237

Ψ(ω, k) = Ψ∗(−ω,−k). (42)

This symmetry condition, imposed by physical constraints at the macroscopic scale, aligns with the microscopic238

symmetries of the constitutive matrix in Eq. (33).239

2.7. Governing equations and boundary value problem240

In this section, we discuss the governing equations and the BVP. For the effective nonlocal non-Hermitian Willis241

metabeam, the effective state vector remains governed by Eq. (1) and Eq. (2). Utilizing the constitutive relation in242

Eq. (39), the governing equation for the state vector in the space-time domain is expressed as243

 0 −∂x
−∂x 1

σ(t, x) +

∫ t

−∞

∫ ∞

∞
C(t− t′, x− x′)σ(t′, x′) +B(t− t′, x− x′)∂tw(t′, x′)dt′dx′ = q1 (43)

244  0 ∂x

∂x 1

w(t, x) + ∂t

∫ t

−∞

∫ ∞

∞
D(t− t′, x− x′)σ(t′, x′) + ρ(t− t′, x− x′)∂tw(t′, x′)dt′dx′ = q2 (44)
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where w = [w,ψ]T , q1 = [pext, sext]
T , and q2 = [fext, qext]

T . In the frequency-wavenumber domain, the governing245

equations take the form246

Hueff = Qext, (45)

where247

H =


0 0 0 −ik

0 0 −ik 1

0 ik 0 0

ik 1 0 0

+

 C −iωB

−iωD −ω2ρ

 . (46)

In the absence of an external source, the dispersion relations are obtained by setting the determinant of the coefficient248

matrix to zero249

det(H) = 0. (47)

For each ω and k satisfying the dispersion relations, the corresponding solution ueff in Eq. (45) represents the250

eigenvector.251

For the vibration problem, boundary conditions are required to determine the eigenfrequencies and eigenmodes of252

the metabeam. Based on the boundary conditions of the conventional Timoshenko beam, the most relevant boundary253

conditions for the nonlocal non-Hermitian Willis metabeam are listed below254

Fixed : weff = 0, ψeff = 0

Simply supported : weff = 0, Meff = 0

Free : Meff = 0, Feff = 0

(48)

In our formalism of Willis media, the bending moment, shear force, displacement, and rotational angle are integrated255

into a state vector, allowing them to be directly prescribed as boundary conditions. This approach eliminates the256

challenges of the conventional Willis media framework, which involves second-order derivatives. In the traditional257

formulation, the nonlocal constitutive relations in Eq. (25) express the bending moment and shear force in terms258

of displacement and rotational angle, making their boundary conditions nonlocal. As a result, solving nonlocal259

boundary conditions analytically becomes intractable, requiring advanced numerical methods (Rabczuk et al., 2023).260

3. Validation of the effective medium theory261

In this section, we validate the EMT by comparing its predicted dispersion relations with those from unit cell262

analysis using COMSOL simulations across various transfer functions, including symmetric real, antisymmetric real,263

asymmetric real, frequency-dependent real, and antisymmetric imaginary cases. By accounting for spatial dispersion264

effects, the nonlocal EMT accurately captures wave behavior, including nonreciprocal propagation, attenuation, and265

amplification, even in high-frequency and short-wavelength regimes—where conventional homogenization theories266

often fail.267

In our study, the sensing piezoelectric patch detects only the bending curvature, while the actuating piezoelectric268

patch applies only the bending moment and shear strain. Consequently, only β11 and β21 are nonzero in the local269
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Figure 3: Effective material properties and dispersion relations for symmetric and antisymmetric real transfer functions. (a–c) Symmetric
transfer functions: (a) Real part of C11 as a function of frequency and wavenumber. (b) Real part of the dispersion curves from unit
cell analysis in COMSOL simulations (purple dots), nonlocal EMT (orange dots), and local EMT (gray solid line). (c) Imaginary part
of the dispersion curves from COMSOL unit cell analysis (purple dots), nonlocal EMT (orange dots), and local EMT (gray solid line).
(d–f) Antisymmetric transfer functions: (d) Real part of C21 as a function of frequency and wavenumber. (e) Real part of the dispersion
curves from COMSOL unit cell analysis (purple dots), nonlocal EMT (orange dots), and local EMT (gray solid line). (f) Imaginary part
of the dispersion curves from COMSOL unit cell analysis (purple dots), nonlocal EMT (orange dots), and local EMT (gray solid line).
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polarizability tensor. Under this condition, Eq. (26) simplifies to270

C11 =
1

D0
+K11

C21 = K21,

(49)

where271

K11 =
β11
(
b4k

4 + b2k
2 + b0

)
a4k4 + a2k2 + a1k + a0

K21 =
β21
(
b4k

4 + b2k
2 + b0

)
a4k4 + a2k2 + a1k + a0

,

(50)

and272

b4 = −D0β11g0

b2 = ω2 (D0ρ0 + I0g0)

b0 = ρ0ω
2
(
−I0ω2 + g0

)
a4 = D0lg0 (−1 + S12β21 + S11β11)

a2 = −ω2 (−D0lρ0 − I0lg0 +D0lS12β21ρ0 + I0lS12β21g0 +D0lS11β11ρ0 +D0I0β11g0 + I0lS11β11g0)

a1 = −D0β21g0ω
2ρ0i

a0 = −ω2ρ0
(
−I0ω2 + g0

)
(−l + lS12β21 +D0β11 + lS11β11) .

(51)

As ω → 0, we also have k → 0, reducing Eq. (50) to273

C11 =
1

D0
+

β11
l −D0β11

C21 =
β21

l −D0β11
,

(52)

Here, the material properties become wavenumber-independent, reducing the medium to a local EMT, accurately274

matching the dispersion relations in the low-frequency and long-wavelength regime. Additionally, β11 influences both275

C11 and C21 simultaneously. For small β11, the leading-order term is given by276

C11 =
1

D0
+
β11
l

C21 =
β21
l
.

(53)

In this case, β11 and β21 independently contribute to C11 and C21, respectively.277

In Eq. (50), K11 and K21 are proportional to β11 and β21, respectively, each scaled by a rational function. For a278

symmetric transfer function where H1(ω) = H2(ω), the actuators generate only bending moments, making β11 the279

only nonzero component. Consequently, K11 is nonzero, modifying the effective bending stiffness in Eq. (30). For an280

antisymmetric transfer function where H1(ω) = −H2(ω), the actuators generate only shear strain, resulting in β21 as281

the only nonzero component. In this case, K21 becomes nonzero, leading to the formation of effective shear stiffness282

in Eq. (30). For an asymmetric transfer function, where H1(ω) ̸= H2(ω) and H1(ω) ̸= −H2(ω), both K11 and K21283

are generated simultaneously. Additionally, in our study, the imaginary part of the rational function is significantly284

smaller than the real part. As a result, when the transfer functions H1(ω) and H2(ω) are purely real, K11 and K21285
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Figure 4: Effective material properties and dispersion relations for asymmetric real transfer functions. (a) Real part of C11 as a function of
frequency and wavenumber. (b) Real part of C21 as a function of frequency and wavenumber. (c) Real part of the dispersion curves from
unit cell analysis in COMSOL simulations (purple dots), nonlocal EMT (orange dots), and local EMT (gray solid line). (d) Imaginary
part of the dispersion curves from COMSOL unit cell analysis (purple dots), nonlocal EMT (orange dots), and local EMT (gray solid
line).

are nearly real. Similarly, when the transfer functions are purely imaginary, K11 and K21 are nearly imaginary. For286

complex transfer functions, K11 and K21 are generally complex-valued.287

Next, we examine the effective properties and dispersion relations for different transfer functions. For symmetric288

transfer functions with H1(ω) = H2(ω) = 0.05, Fig. 3(a) presents the real part of C11, while the imaginary part is289

omitted as it is negligibly small. The dispersion curves from COMSOL simulations, the nonlocal effective C11 from290

Eq. (49), and the local effective C11 from Eq. (52) are shown in Fig. 3(b,c). The dispersion curves from the local291

EMT align well with COMSOL simulations in the low-frequency and long-wavelength regimes but deviate at high292

frequencies and short wavelengths. In contrast, the nonlocal EMT provides a close match to the COMSOL results293

across both low- and high-frequency ranges, demonstrating its superior accuracy in capturing wave dynamics over a294

broader frequency and wavelength spectrum compared to the local EMT.295

For antisymmetric transfer functions with H1(ω) = −H2(ω) = 0.3, the effective properties and dispersion curves296

are shown in Fig. 3(d–f). Only the real part of C21 is displayed, as the imaginary part remains small and is therefore297

omitted. The presence of a nonzero real C21 introduces an imaginary component in the dispersion curves. The298

local EMT accurately captures both the real and imaginary parts of the dispersion relations in the low-frequency299

and long-wavelength regimes, while the nonlocal EMT extends this accuracy to high frequencies and short wave-300

lengths. The emergence of C21 breaks the major symmetry, rendering the medium non-Hermitian and introducing a301

nonzero imaginary component in the dispersion relation. Furthermore, the imaginary part of the dispersion relation302

is antisymmetric with respect to the wavenumber, leading to wave attenuation for left-propagating waves (nega-303
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Figure 5: Effective material properties and dispersion relations for local resonant and antisymmetric imaginary transfer functions. (a–c)
Local resonant transfer functions: (a) Real part of C11 as a function of frequency and wavenumber. (b) Real part of the dispersion
curves from COMSOL unit cell analysis (dark purple dots for the lower band, light purple dots for the upper band) and from EMT (dark
orange dots for the lower band, light orange dots for the upper band). (c) Imaginary part of the dispersion curves from COMSOL unit
cell analysis (dark purple dots for the lower band, light purple dots for the upper band) and EMT (dark orange dots for the lower band,
light orange dots for the upper band). (d–f) Antisymmetric imaginary transfer functions: (d) Real part of C21 as a function of frequency
and wavenumber. (e) Real part of the dispersion curves from COMSOL unit cell analysis (purple dots) and EMT (orange dots). (f)
Imaginary part of the dispersion curves from COMSOL unit cell analysis (purple dots) and EMT (orange dots).

tive wavenumber) and amplification for right-propagating waves (positive wavenumber). This asymmetry induces304

nonreciprocal wave propagation due to non-Hermiticity.305

For asymmetric transfer functions with H1(ω) = 0.35 and H2(ω) = −0.25, which incorporate the effects of both306

symmetric and antisymmetric transfer functions, the effective properties and dispersion curves are shown in Fig. 4.307

In this case, both C11 and C21 are nonzero, resulting in a downward shift in the real part of the dispersion curve308

and the appearance of an imaginary component in the dispersion relation. The local EMT accurately captures the309

dispersion curves in the low-frequency and long-wavelength regimes but shows deviations at high frequencies and310

short wavelengths. In contrast, the nonlocal EMT closely matches the COMSOL simulation results across both311

regimes, demonstrating its effectiveness in capturing wave dynamics over a broader frequency and wavelength range.312

Our EMT extends beyond constant transfer functions and applies to frequency-dependent transfer functions,313

including the local resonant transfer function discussed here. We consider antisymmetric transfer functions given by314

H1(ω) = −H2(ω) =
0.3ω2

0

ω2 − ω2
0

(54)

where ω0 = 4000π Hz. In this case, H1(ω) is negative for ω < ω0, positive for ω > ω0, and singular at ω = ω0.315

The antisymmetric transfer function induces a nonzero C21, breaking Hermiticity and resulting in nonzero imaginary316

dispersion curves. The presence of local resonance splits the dispersion curve into two branches, with the imaginary317

dispersion curves exhibiting frequency sign reversal due to the sign change of C21 at ω0. The nonlocal EMT closely318
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matches the COMSOL simulation results for both real and imaginary dispersion curves across high-frequency and319

short-wavelength regimes, as shown in Fig. 5(a-c), demonstrating its effectiveness in capturing wave dynamics for320

frequency-dependent transfer functions over a broad frequency and wavelength range.321

Non-Hermiticity alone does not necessarily lead to a complex spectrum. For instance, eigenvalues remain real in322

the PT-unbroken phase and can also be real in a more general pseudo-Hermitian system (Ashida et al., 2020). In our323

system, verifying the pseudo-Hermitian condition is challenging, yet we observe a real spectrum for antisymmetric324

imaginary transfer functions. For transfer functions H1(ω) = −H2(ω) = 0.3i, Fig. 5(d) presents the imaginary part325

of C21, while the real part is omitted as it is negligibly small. The nonzero C21 breaks the Hermitian condition,326

yet the spectra in Fig. 5(e,f) remain purely real. However, the real part of the dispersion curve is asymmetric with327

respect to the vertical axis, as the nonzero C21 breaks parity symmetry. The agreement between the dispersion328

curves from COMSOL simulations and EMT in Fig. 5(e) confirms this asymmetry, demonstrating the validity of329

EMT for purely imaginary transfer functions.330

4. Wave phenomena in non-Hermitian Willis beam331

4.1. Dispersion curves and mode characterization of flexural waves332

Flexural wave characterization+Physical mechanism In our study, only K21 and K11 are nonzero. Thus, the333

dispersion equations in Eq. (45) simplify to334


C11 0 0 −k i

C21 1/G0 −k i 1

0 k i ω2 ρ0 0

k i 0 0 J0 ω
2




Meff

Feff

weff

ψeff

 =


0

0

0

0

 (55)

where C11 and C21 are defined in Eq. (49). Eliminate Meff and Feff gives335

 −C11

(
−ω2ρ0 +G0k

2
)

−G0k(C11i− C21k)

C11G0ki −C11G0 + C11J0ω
2 − C21G0ki− k2

 weff

ψeff

 =

 0

0

 (56)

Assuming weff as 1, we have336

ψeff = − C11G0ki

C11G0 − C11J0ω2 + C21G0ki+ k2
(57)

The ratio of shear strain and rotation angle is defined as337

γeff
ψeff

=
ikweff − ψeff

ψeff
= − (C11i− C21k)(−C11ω

2ρ0 + 2C11G0k
2 + C21G0k

3i)

C11(−ω2ρ0 +G0k2)(C11 + C21ki)i
(58)

As shown in Fig. 6, the magnitude of the ratio of shear strain to rotation angle increases significantly compared to the338

traditional Timoshenko beam model, making the shear effect observable when C21 is nonzero for the antisymmetric339

transfer functions H1 = −H2 = −1. This indicates that the Willis metabeam in our study can support shear waves340

at low frequencies, a feature absent in classical beam models.341
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Figure 6: The magnitude of the ratio of shear strain to rotation angle from COMSOL simulations (purple solid line with circles),
local EMT (gray solid line), and the traditional Timoshenko beam model (orange solid line). Here, antisymmetric transfer functions
H1 = −H2 = 1 are used.

4.2. The broken reciprocity theorem342

In local media, the reciprocity theorem is equivalent to major symmetry (Nassar et al., 2020). However, in343

nonlocal media, major symmetry alone does not ensure reciprocity. Instead, reciprocity arises from the combined344

presence of major symmetry and time-reversal symmetry (Shokri and Rukhadze, 2019). In our system, the presence345

of C21 breaks major symmetry, leading to reciprocity violation. Next, we examine reciprocity and its breaking,346

starting with the Green’s function. The Green’s function of Willis metabeam in the frequency-wavenumber domain347

satisfies348

HGeff(ω, k) = I. (59)

The presence of C21 breaks the symmetry condition of H.349

H(ω, k) ̸= HT (ω,−k), (60)

Therefore, the Green’s function Geff = H−1 no longer satisfies the symmetry condition350

Geff(ω, k) ̸= GT
eff(ω,−k), (61)

which translates to351

Geff(ω, x− x′) ̸= GT
eff(ω, x

′ − x) (62)

in the spatial domain. For an external load Qext, the corresponding response is given by352

ueff(ω, x) =

∫
L

Geff(ω, x− x′)Qext(x
′)dx′ (63)

in the spatial domain. To evaluate the reciprocity condition, we conduct two load-response tests. In the first case, the353

applied load is Q1
ext(ω, x) with the corresponding response u1

eff(ω, x), while in the second case, the load is Q2
ext(ω, x)354
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with the response u2
eff(ω, x). The reciprocity condition is given by (Nassar et al., 2020)355

∫
L

(u2
eff)

T (ω, x)Q1
ext(ω, x)dx =

∫
L

(u1
eff)

T (ω, x)Q2
ext(ω, x)dx. (64)

Using Eq. (62), the reciprocity condition can be rewritten as356

∫
L

∫
L

(Q2
ext)

T (ω, x′)GT
eff(ω, x− x′)Q1

ext(ω, x) dxdx
′ =

∫
L

∫
L

(Q1
ext)

T (ω, x′)GT
eff(ω, x− x′)Q2

ext(ω, x) dxdx
′. (65)

Taking the transpose and interchanging x and x′ on the right-hand side, we obtain357

∫
L

∫
L

(Q2
ext)

T (ω, x′)GT
eff(ω, x− x′)Q1

ext(ω, x) dxdx
′ =

∫
L

∫
L

(Q2
ext)

T (ω, x′)Geff(ω, x
′ − x)Q1

ext(ω, x) dxdx
′. (66)

Therefore, Eq. (66) shows that the reciprocity condition in Eq. (64) is equivalent to the symmetry condition of the358

Green’s function,359

Geff(ω, x− x′) = GT
eff(ω, x

′ − x). (67)

In our study, the presence of C21 breaks this symmetry condition, leading to the inequality in Eq. (62). As a result,360

the equality in Eq. (66) is violated, thereby breaking the reciprocity theorem in Eq. (64).361

We now numerically verify the breaking of the reciprocity theorem using COMSOL simulations with constant362

antisymmetric transfer functions H1(ω) = −H2(ω) = 0.3. Two numerical tests are performed: in the first case, a363

unit shear force Q1
ext(x) = [0, 0, 0, 1]T δ(x+ 6l) is applied at x = −6l, and the resulting displacement w1 is measured364

at x = 6l, as shown in Fig. 7(a). In the second case, a unit shear force Q2
ext(x) = [0, 0, 0, 1]T δ(x − 6l) is applied at365

x = 6l, and the displacement w2 is measured at x = −6l, as illustrated in Fig. 7(a). The difference between the366

left-hand side and right-hand side of Eq. (64) is given by367

∆ = (u2
eff)

TQ1
ext − (u1

eff)
TQ2

ext = w2 − w1. (68)

The measured magnitude of ∆, normalized by |w2|, as a function of frequency is shown in Fig. 7(b). Since |∆|/|w1|368

is nonzero, ∆ does not vanish, confirming the violation of the reciprocity theorem.369

For a shear load applied on the left, the wave in the metabeam undergoes attenuation. This attenuation can be370

characterized using the k-ω dispersion relations. By sweeping ω from 1 kHz to 10 kHz, the corresponding k values371

are obtained by solving Eq. (47). The resulting dispersion curves are shown in Fig. 7(c) (3D view), Fig. 7(d) (front372

view), and Fig. 7(e) (top view). As an example, at an excitation frequency of 4 kHz, the imaginary parts of both373

wavenumbers are positive, indicating wave attenuation in the metabeam, as shown in the top panel of Fig. 7(a).374

Furthermore, in Fig. 7(f), the imaginary wavenumber matches the decay factor observed in the logarithmic plot of375

the transverse displacement magnitude, confirming the attenuation behavior.376

4.3. Bulk-boundary correspondence377

In Hermitian systems, the governing operator is Hermitian, ensuring real eigenvalues. In classical elasticity, for378

example, the governing equation can be expressed as an eigenvalue problem in Hilbert space, where the Hermitian379
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Figure 7: Nonreciprocal wave propagation in Willis media. (a) Displacement response under two shear force loads applied at the right
(top panel) and left (bottom panel) with an excitation frequency of 4 kHz. The corresponding displacements are measured at the opposite
ends. (b) Normalized displacement difference as a function of excitation frequency. (c) 3D view of the k-ω dispersion curves, where the
orange point corresponds to the excitation frequency of 4 kHz in the bottom panel of (a). (d) Front view of the k-ω dispersion curves.
(e) Top view of the k-ω dispersion curves. (f) Displacement field extracted along the middle line of the bottom panel in (a), with the
slope of the gray solid line corresponding to the imaginary part of the orange point in (e).

nature of the operator guarantees real frequency spectrum. However, in non-Hermitian systems, this condition no380

longer holds, allowing complex frequency spectrum to emerge.381

Despite the presence of non-Hermiticity, Bloch’s theorem remains valid for systems that maintain linearity and382

periodicity. Consequently, the dispersion relation is still well-defined, and non-Hermitian systems exhibit frequency383

periodicity in both the real and imaginary axis within the first Brillouin zone. As a result, the frequency spectrum384

under PBC forms closed loops in the complex plane, each characterized by a topological invariant known as the385

winding number, which arises from differential geometry.386

Under OBC, non-Hermitian systems exhibit the ”skin effect”, where most eigenmodes localize near the boundaries,387

forming ”skin modes” (Yao and Wang, 2018). Studies (Okuma et al., 2020; Yang et al., 2020) show that the existence388

and localization direction of these modes are governed by the winding number: a nonzero winding number indicates389

the presence of skin modes, while its sign determines their localization direction. This relationship establishes a new390

form of bulk-boundary correspondence unique to non-Hermitian physics.391

In the following section, we outline the method for calculating the winding number of the frequency spectrum392

under PBC, conduct an asymptotic analysis to derive the frequency spectrum under OBC, and extend the non-393

Hermitian bulk-boundary correspondence to Willis media.394

4.3.1. Winding number of the frequency spectrum under PBC395

In our system, multiple eigenfrequencies, denoted as ωα(k), may exist for a given wavenumber under PBC. In396

non-Hermitian systems, the frequency spectrum is generally complex and can form a loop enclosing a base point ωb.397
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Figure 8: Bulk-boundary correspondence of the winding number and skin mode. (a) Frequency spectrum for the flexural mode of a
metabeam under PBC (gradient-colored dots) and fixed boundary conditions (red dots) from COMSOL simulations. The gray solid loop,
obtained from the dispersion relation in Eq. (47), and the orange solid line, derived from the BVP in Eq. (78), represent the effective
non-Hermitian Willis medium. (b) GBZ associated with the frequency spectrum under fixed boundary conditions, represented by the
orange solid line in (a). (c) Eigenmodes from COMSOL simulations corresponding to the starred locations in the frequency spectrum
and their associated GBZs. In (a–c), the transfer functions are H1 = −H2 = 0.3 in the left panel, H1 = −H2 = 0 in the middle panel,
and H1 = −H2 = −0.3 in the right panel.
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Figure 9: Bulk-boundary correspondence of the winding number and skin mode for transfer functions H1(ω) = −H2(ω) = 1. (a)
Frequency spectrum for the flexural mode of a metabeam under PBC (gradient-colored dots) and fixed boundary conditions (red dots)
from COMSOL simulations. The gray solid loop, obtained from the dispersion relation in Eq. (47), and the orange solid line, derived from
the BVP in Eq. (78), represent the effective non-Hermitian Willis medium. (b) Eigenmodes from COMSOL simulations corresponding
to the starred locations in the frequency spectrum (a).

This loop remains topologically protected as long as ωb remains inside it. In one-dimensional systems, such loops398

are quantitatively characterized by the winding number of the spectrum (Ashida et al., 2020), given by399

ν(ωb) =
∑
α

∫ π/l

−π/l

dk

2π

d

dk
arg [ωα(k)− ωb] . (69)

For antisymmetric transfer functions H1(ω) = −H2(ω), the complex frequency spectrum under PBC is shown in400

Fig. 8(a) for H1(ω) = 0.3 (left panel), H1(ω) = 0 (middle panel), and H1(ω) = −0.3 (right panel). In the left panel,401

the spectral loop rotates clockwise as k varies from −π/l to π/l, yielding a winding number ν(ωb) = −1 for any402

base frequency ωb enclosed by the loop. In the middle panel, the frequency spectrum collapses to a line, indicating403

a winding number of zero for any ωb. In the right panel, the spectral loop rotates counterclockwise as k varies from404

−π/l to π/l, resulting in a winding number ν(ωb) = 1 for any base frequency ωb inside the loop.405

For antisymmetric transfer functions H1(ω) = −H2(ω) = 1, the complex frequency spectrum under PBC is shown406

in Fig. 9(a). The spectrum forms a clockwise loop, indicating a winding number ν(ωb) = −1 for any base frequency407

ωb enclosed by the loop. When the antisymmetric transfer function follows Eq. (54), the complex frequency spectrum408

under PBC is shown in Fig. 10(a). In this case, the spectrum consists of a counterclockwise loop on the left and a409

clockwise loop on the right. Consequently, the winding number ν(ωb) is 1 for any base frequency ωb inside the left410

loop and -1 for any base frequency inside the right loop.411

4.3.2. Asymptotic analysis of the frequency spectrum under OBC412

Next, we address the BVP for a finite beam with specified boundary conditions. While non-Hermiticity often413

introduces significant complexity, an intriguing simplification emerges when the beam becomes very long: in this414

limit, the BVP effectively becomes independent of the specific boundary conditions. That is, for L → ∞, certain415

non-Hermitian complexities are mitigated compared to the Hermitian case. In this section, we apply asymptotic416

analysis to determine the frequency spectrum under OBC by taking the beam’s length L to infinity. This approach417
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Figure 10: Frequency-dependent skin mode and its bulk-boundary correspondence for transfer functions in Eq. (54). (a) Frequency
spectrum for the flexural mode of a metabeam under PBC (gradient-colored dots) and fixed boundary conditions (red dots) from
COMSOL simulations. The gray solid loop, obtained from the dispersion relation in Eq. (47), and the orange solid line, derived from
the BVP in Eq. (78), represent the effective non-Hermitian Willis medium. (b) Eigenmodes from COMSOL simulations corresponding
to the starred locations in the frequency spectrum in (a).

yields two algebraic equations whose solutions not only provide the OBC frequency spectrum but also identify the418

GBZ—a concept unique to non-Hermitian systems. All derivations in this section are based on EMT, so the subscript419

eff is omitted for clarity.420

For the non-Hermitian medium, the dispersion relation in Eq. (47) yields four wavenumber roots for a given421

frequency, denoted as kn for n = 1, 2, 3, 4. The general solution for the transverse displacement of the non-Hermitian422

Willis metabeam is given by423

w(x) =

4∑
n=1

Ane
iknx (70)

where An are the corresponding coefficients. The rotational angle is expressed as424

ψ(x) =

4∑
n=1

AnR
n
ψe

iknx (71)

where Rnψ is defined in Eq. (B.13). Now, we consider the BVP using fixed boundary conditions as an example:425

w(0) = 0, ψ(0) = 0, w(L) = 0, ψ(L) = 0. (72)

where L is the length of the finite metabeam. Substituting the wave solutions into these boundary conditions, we426

obtain the following equations427 
1 1 1 1

R1
ψ R2

ψ R3
ψ R4

ψ

eik1L eik2L eik3L eik4L

R1
ψe

ik1L R2
ψe

ik2L R3
ψe

ik3L R4
ψe

ik4L




A1

A2

A3

A4

 =


0

0

0

0

 (73)
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Setting the determinant of the coefficient matrix to zero yields the frequency spectrum under fixed boundary condi-428

tions429 ∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

R1
ψ R2

ψ R3
ψ R4

ψ

eik1L eik2L eik3L eik4L

R1
ψe

ik1L R2
ψe

ik2L R3
ψe

ik3L R4
ψe

ik4L

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (74)

Next, we derive the GBZ by extending the method developed for lattice systems (Yokomizo and Murakami, 2019).430

The solution of Eq. (74) simplifies for large L, forming the corresponding continuum spectrum. Expanding the431

determinant in Eq. (74), we obtain432

F1

(
k⃗, ω

)
ei(k1+k2)L + F2

(
k⃗, ω

)
ei(k1+k3)L + F3

(
k⃗, ω

)
ei(k1+k4)L

+ F4

(
k⃗, ω

)
ei(k2+k3)L + F5

(
k⃗, ω

)
ei(k2+k4)L + F6

(
k⃗, ω

)
ei(k3+k4)L = 0

(75)

Here, k⃗ = [k1, k2, k3, k4], and Fi(k⃗, ω) (i = 1, 2, . . . , 6) are coefficients that depend on both frequency and wavenum-433

bers, obtained by expanding the determinant in Eq. (74). We now analyze the asymptotic behavior of the solutions434

of Eq. (75) for large L, where the wavenumbers are ordered as Im(k1) < Im(k2) < Im(k3) < Im(k4) for convenience.435

If Im(k2) ̸= Im(k3), only one leading term proportional to F6(k⃗, ω)e
i(k3+k4)L remains in Eq. (75) in the limit of436

large L. This leads to437

F6

(
k⃗, ω

)
= 0 (76)

which does not depend on L and does not allow for a continuous frequency spectrum.438

On the other hand, when Im(k2) = Im(k3), two leading terms proportional to ei(k2+k4)L and ei(k3+k4)L remain,439

allowing Eq. (75) to be rewritten as440

ei(k2−k3)L = −
F6

(
k⃗, ω

)
F5

(
k⃗, ω

) (77)

In such a case, we can expect that the difference between Re (k2) and Re (k3) can be changed almost continuously441

for a large L, producing continuum frequency spectrum.442

Finally, in the asymptotic limit L → ∞, the boundary value problem of the nonlocal non-Hermitian metabeam443

reduces to two algebraic equations:444

|H(ω, k)| = 0,

Im (k2(ω)) = Im (k3(ω)) .
(78)

For a given complex frequency ω, the first equation in Eq. (78) yields four frequency-dependent wavenumbers k1(ω),445

k2(ω), k3(ω), and k4(ω), ordered as Im(k1) < Im(k2) < Im(k3) < Im(k4). Among these, the second and third446

wavenumbers satisfy the second equation in Eq. (78). The first equation is complex and can be decomposed into two447

real equations, yielding a total of three real equations involving four independent real variables: Re(ω), Im(ω), Re(k),448

and Im(k). As a result, the solutions (Re(ω), Im(ω),Re(k), Im(k)) form continuous curves in the four-dimensional449

space. When projected onto the complex ω-plane, these solutions appear as continuous curves, ensuring that the450

frequency spectrum remains continuous. Similarly, their projection onto the complex k-plane forms continuous curves,451

known as the GBZ. The GBZ extends the Brillouin zone concept from Hermitian physics and plays a fundamental452
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role in non-Hermitian physics. It is crucial for reconstructing the bulk-boundary correspondence of the Chern number453

and topological edge modes, as well as for computing the Green’s function to determine system responses, such as454

stress or strain, under external excitations in engineering applications.455

As mentioned earlier, Eq. (78) includes a complex equation. Unlike in non-Hermitian local media, where dis-456

persion relations can be transformed into polynomial equations and efficiently solved using resultant-based methods457

from algebraic geometry, the dispersion relations here are transcendental. Consequently, the resultant-based method458

fails, necessitating direct numerical solutions. However, solving complex equations numerically is challenging since459

many numerical methods are designed for real-valued equations. To address this, for a given variable such as Re(ω),460

Eq. (78) can be reformulated as three real equations involving three real independent unknowns. Numerical tech-461

niques such as Newton’s method, iterative solvers, or gradient-based optimization can then be applied. Here, we462

use ”fsolve” function in MATLAB. By sweeping Re(ω) over the desired range, continuous frequency spectra and463

generalized Brillouin zones can be obtained.464

In deriving Eq. (78), fixed boundary conditions were used. However, in the asymptotic limit, the frequency465

spectrum equation in Eq. (78) remains independent of the specific boundary conditions. For other boundary466

conditions, such as free, simply supported, or mixed conditions, the coefficients Fi(k⃗, ω) (i = 1, 2, . . . , 6) will change,467

but the spectrum condition Im (k2(ω)) = Im (k3(ω)) remains unaffected. Therefore, the frequency spectrum can be468

determined by solving Eq. (75) regardless of the boundary conditions. In other words, the frequency spectrum under469

OBC is independent of the specific type of boundary conditions.470

The frequency spectra under OBC for various transfer functions are shown as orange solid lines in Fig. 8(a), Fig.471

9(a), and Fig. 10(a), closely matching the eigenfrequencies obtained from COMSOL simulations (red dots). Minor472

discrepancies arise due to the finite beam length in the COMSOL model and diminish as the beam length increases.473

The corresponding eigenmodes, shown in Fig. 8(c), Fig. 9(b), and Fig. 10(b), exhibit localization at the edges and474

are therefore identified as skin modes. These skin modes display exponential localization, with exponential factors475

determined by the GBZ. For instance, the GBZ corresponding to the frequency spectrum in Fig. 8(a) is shown in476

Fig. 8(b). In the left panel of Fig. 8(b), the GBZ is below the horizontal axis, indicating positive exponential factors,477

leading to eigenmodes that grow from left to right, as seen in the left panel of Fig. 8(c). In the middle panel of Fig.478

8(b), the GBZ lies on the horizontal axis, signifying zero exponential factors, corresponding to extended eigenmodes,479

as shown in the middle panel of Fig. 8(c). In the right panel of Fig. 8(b), the GBZ is above the horizontal axis,480

indicating negative exponential factors, resulting in eigenmodes that grow from right to left, as depicted in the right481

panel of Fig. 8(c).482

4.3.3. Bulk-boundary correspondence483

In the previous sections, we introduced the methods for calculating the winding number and the frequency484

spectrum under OBC, along with the concept of skin modes. In this section, we unify these concepts through485

bulk-boundary correspondence.486

Bulk-boundary correspondence has two key aspects. The first concerns the relationship between the frequency487

spectra under PBC and OBC, which holds for both EMT and COMSOL simulations. In non-Hermitian systems, the488

OBC spectrum is always enclosed by the PBC spectrum. As shown in Fig. 8(a), for small transfer functions, the489

OBC spectrum remains real and is encircled by the PBC spectrum. As the transfer function magnitude increases,490
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the OBC spectrum becomes complex while still remaining enclosed by the PBC spectrum, as seen in Fig. 9(a). For491

resonant transfer functions in Fig. 10(a), the PBC spectrum splits into two separate loops, each enclosing the OBC492

spectrum. These cases illustrate the fundamental relationship between the PBC and OBC spectra, reinforcing the493

principles of bulk-boundary correspondence in non-Hermitian systems.494

The second aspect of bulk-boundary correspondence describes the relationship between the sign of the winding495

number at a base frequency (the eigenfrequency of an eigenmode under OBC) and the localization direction of skin496

modes. If the winding number at a base frequency is negative, the corresponding skin mode localizes at the right497

edge, as shown in the left panels of Fig. 8(a,c). If the winding number is zero, the eigenmode remains extended, as498

depicted in the middle panels of Fig. 8(a,c). Conversely, if the winding number is positive, the skin mode localizes at499

the left edge, as shown in the right panels of Fig. 8(a,c). These relationships hold for different transfer functions, as500

further demonstrated in Fig. 9 and Fig. 10. Instead of computing the GBZ, which is complex and computationally501

demanding, bulk-boundary correspondence provides a more efficient way to determine the localization of skin modes.502

By simply checking the sign of the winding number from the PBC spectrum, the localization behavior of skin modes503

can be directly inferred.504

5. Application505

5.1. Nonreciprocal filtering and amplification506

In conventional designs, filters and amplifiers are treated as separate components that cannot be directly inte-507

grated. However, as shown in the previous section, our system exhibits direction-dependent gain: waves traveling508

from left to right are amplified, while those traveling from right to left are attenuated. This nonreciprocal property,509

enabled by Willis media, allows filtering and amplification to be seamlessly integrated into a single metabeam.510

Specifically, for constant antisymmetric transfer functions H1(ω) = −H2(ω) = 0.3, the dispersion curves in Fig.511

11(c–e) show that waves always decay from left to right but are amplified from right to left. As a result, when a512

signal enters from the left, the measured output on the right is attenuated, whereas a signal entering from the right513

is amplified on the left. By simply switching the input and detection positions, the metabeam can function either514

as a filter or an amplifier. The frequency responses for these two cases are compared in Fig. 11(a), clearly showing515

that the right output is attenuated for a left-side input, while the left output is amplified for a right-side input.516

While conventional frequency-selective filters attenuate signals within a specific passband while leaving out-of-517

band signals largely unchanged, many applications require the additional capability to amplify out-of-band signals.518

Our Willis metabeam achieves this dual functionality by utilizing antisymmetric local resonant transfer functions (see519

Eq. (54)). Specifically, a left-to-right traveling wave is amplified for frequencies below 2 kHz but attenuated above520

2 kHz, functioning as a low-stop high-amplifying filter (LSHAF). By reversing the input and output positions, the521

system instead operates as a low-amplifying high-stop filter (LAHSF), amplifying low-frequency components while522

attenuating higher frequencies. Numerical results for these two modes, shown in Fig. 11(b) and Fig. 11(c), confirm523

the expected behaviors of LSHAF and LAHSF. Together, these designs offer a novel approach to frequency-selective524

filtering and amplification, surpassing the capabilities of conventional high-pass or bandpass filters.525
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Figure 11: Utilizing nonreciprocal wave behavior for filtering and amplification. (a) For constant antisymmetric transfer functions, the
Willis beam amplifies signals propagating from left to right while acting as a filter for signals traveling from right to left. (b) The ratio of
output w0 to input wi signal as a function of excitation frequency for (a). (c) For resonant antisymmetric transfer functions, the Willis
beam filters out low-frequency signals (below f0) and amplifies high-frequency signals (above f0) when the signal is input from the left
and output at the right. (d) The ratio of output w0 to input wi signal as a function of excitation frequency for (c), with the dashed
gray line indicating the resonant frequency f0 = 2kHz. (e) For resonant antisymmetric transfer functions, the Willis beam filters out
high-frequency signals (above f0) and amplifies low-frequency signals (below f0) when the signal is input from the right and output at
the left. (f) The ratio of output w0 to input wi signal as a function of excitation frequency for (e), with the dashed gray line marking
the resonant frequency f0 = 2kHz.

Figure 12: Non-Hermitian interface modes. (a) The frequency spectrum of a finite beam with 10 unit cells, where the interface is located
at the 5th and 6th unit cells. The transfer functions for the left five unit cells are H1 = −H2 = −0.3, while for the right five unit cells,
they are H1 = −H2 = 0.3. (b) Eigenmodes and their corresponding eigenfrequencies at the starred locations in the frequency spectrum
of (a). (c) Eigenmodes and their eigenfrequencies for interfaces located between the 3rd and 4th unit cells (left panel), between the 5th
and 6th unit cells (middle panel), and between the 7th and 8th unit cells (right panel).
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5.1.1. Non-Hermitian interface modes and its potential application in energy harvest526

In energy harvesting, external energy sources are often distributed across a broad area, while the harvester itself527

is confined to a single location. Efficiently channeling energy from multiple source points to the harvester presents528

a significant challenge. One approach to address this is through skin modes with a real-valued spectrum, where the529

real spectrum ensures system stability and prevents unwanted energy feedback from the sensor-actuator circuit into530

the beam. These modes naturally concentrate energy along a boundary, regardless of the source location, allowing531

the harvester to be placed there for effective energy collection. However, boundary localization inherently limits532

the flexibility of harvester placement. To overcome this constraint, we utilize non-Hermitian interface modes with533

a real spectrum to enable energy localization at user-defined interfaces. This approach maintains efficient energy534

concentration while significantly expanding the possible locations for harvester installation.535

In the left and right panels of Fig. 8(c), the localization directions of the two eigenmodes are reversed. By directly536

connecting these configurations, each consisting of five unit cells, a beam with ten unit cells is formed, creating an537

interface at the center. As a result, the mode shape becomes a localized mode at the interface, as shown in Fig.538

12(b). The OBC frequency spectrum remains real and is presented in Fig. 12(a), where all eigenmodes correspond539

to interface modes localized at the interface. For instance, three eigenmodes corresponding to the starred points540

in Fig. 12(a) are shown in Fig. 12(b), demonstrating that interface modes span a broad frequency range. This541

is particularly significant because external energy sources typically operate over a wide range of frequencies. By542

adjusting the interface position, energy localization can be achieved at user-defined locations. For example, the543

interface mode is localized at the prescribed interface between the 3rd and 4th unit cells in the left panel of Fig.544

12(c), between the 5th and 6th unit cells in the middle panel, and between the 7th and 8th unit cells in the right545

panel. In conclusion, our design potentially enables efficient energy concentration, allows for a user-defined harvester546

position, and supports energy harvesting over a broad frequency range.547

6. Conclusion548

We developed an EMT for nonlocal non-Hermitian Willis metabeams, incorporating sensor-actuator interactions549

to enable active wave control. Using source-driven homogenization, we derived a dynamic effective medium model550

that accurately captures high-frequency and short-wavelength wave behavior, overcoming the limitations of classical551

homogenization approaches. This framework integrates non-Hermitian physics and Willis couplings, allowing precise552

control over wave amplification, attenuation, and nonreciprocal propagation.553

Numerical validation through COMSOL simulations confirms the accuracy of our EMT in predicting wave dis-554

persion and effective material properties. Additionally, we establish a bulk-boundary correspondence for nonlocal555

non-Hermitian Willis media, linking winding numbers to skin modes and extending topological wave mechanics to556

elastodynamic systems.557

Beyond theoretical advancements, we demonstrate applications in nonreciprocal wave control, interface-localized558

energy harvesting, and low-frequency shear wave manipulation. These findings lay the foundation for active meta-559

materials with tunable wave properties, opening new possibilities in wave-based computing, vibration control, and560

energy harvesting.561
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Appendix A. Geometric and material parameters573

The geometric parameters of the model in Fig. 2(a) are listed in Table A.1. The background beam is made of574

aluminum with a Young’s modulus of 70 GPa, a Poisson ratio of 0.33, and a density of 2700 kg/m3. The piezoelectric575

patches are composed of PZT-5H, with material properties available in the COMSOL material library. The capacitor576

C0 in Eq. (12) has a value of −0.611 pF.577

Table A.1: Geometry parameters of 3D model

Parameter Value (Unit) Parameter Value (Unit)
w 21.9 mm l 20 mm
w1 16.1 mm l1 12 mm
w2 8 mm l2 4 mm
w3 3.5 mm l3 2.9 mm
hb 2 mm hp 0.5 mm

Appendix B. Green’s function578

Appendix B.1. Displacement response in Timoshenko beam579

Eliminating M , F , and ψ in the governing equations Eq. (6), we obtain580

D0
∂4w

∂x4
+ J0ω

2

(
1 +

D0P0

G0J0

)
∂2w

∂x2
+

(
J0ρ0ω

4

G0
− ρ0ω

2

)
w

= − ∂q

∂x
+

(
1− J0

G0
ω2

)
f − D0

G0

∂2f

∂x2
+D0

∂2p

∂x2
+D0

∂3s

∂x3
+ J0ω

2 ∂s

∂x

(B.1)

If only shear force is applied as f = δ(x), the equations can be reduced as581

D0
∂4w

∂x4
+ J0ω

2

(
1 +

D0P0

G0J0

)
∂2w

∂x2
+

(
J0ρ0ω

4

G0
− ρ0ω

2

)
w =

(
1− J0

G0
ω2

)
δ(x)− D0

G0

∂2δ(x)

∂x2
(B.2)
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The Fourier transform of this equation is582

w(ω, k) =
1

D0

1− J0
G0
ω2 + D0

G0
k2

(k2 + a2)(k2 + b2)
(B.3)

Here a = ik1, b = k2, and k1 (pure real) and k2 (pure real) satisfy the dispersion relation of Timoshenko beam for a583

given angular frequency ω584

det[ζ(k, ω)] = 0. (B.4)

The inverse Fourier transform using MATLAB symbolic calculation is585

w(ω, x) = − 1

2D0

1− J0
G0
ω2 − D0

G0
a2

(a2 − b2)a
e−a|x| +

1

2D0

1− J0
G0
ω2 − D0

G0
b2

(a2 − b2)b
e−b|x| (B.5)

or equivalently,586

w(ω, x) =
1

2D0

1− J0
G0
ω2 + D0

G0
k21

(k21 + k22)ik1
e−ik1|x| − 1

2D0

1− J0
G0
ω2 − D0

G0
k22

(k21 + k22)k2
e−k2|x| (B.6)

Smilarily, for delta source q only, the displacement response is587

w(ω, x) =
1

2D0(k21 + k22)
e−ik1|x|sgn(x)− 1

2D0(k21 + k22)
e−k2|x|sgn(x), (B.7)

for delta source p only, the displacement response is588

w(ω, x) =
ik1

2(k21 + k22)
e−ik1|x| − k2

2(k21 + k22)
e−k2|x|, (B.8)

and for delta source s only, the displacement response is589

w(ω, x) = −−D0k
2
1 + J0ω

2

2D0(k21 + k22)
e−ik1|x|sgn(x) +

D0k
2
2 + J0ω

2

2D0(k21 + k22)
e−k2|x|sgn(x) (B.9)

Appendix B.2. The Green’s function590

Because the system preserves the translational symmetry, applying the linear combination of the four type point591

load f0δ(x− x′), q0δ(x− x′), p0δ(x− x′), and s0δ(x− x′) at x′ simultaneously, the displacement response function592

responded at x is593

w(x′, x) = (p0A1 + s0 sgn(x− x′)A2 + f0A3 + q0 sgn(x− x′)A4) e
−ik1|x−x′|

+ (p0A1a1 + s0 sgn(x− x′)A2a2 + f0A3a3 + q0 sgn(x− x′)A4a4) e
−k2|x−x′|

= B1(x− x′)TQ0e
−ik1|x−x′| +B2(x− x′)TQ0e

−k2|x−x′|

(B.10)

where594

B1(x) =


A1

sgn(x− x′)A2

A3

sgn(x− x′)A4

 , B2(x) =


A1a1

sign(x− x′)A2a2

A3a3

sign(x)A4a4

 Q0 =


p0

s0

f0

q0

 , (B.11)
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and595

A1 =
ik1

2(k21 + k22)
,

A2 =
D0k

2
1 − J0ω

2

2D0(k21 + k22)
,

A3 =
1

2D0

1− J0
G0
ω2 + D0

G0
k21

(k21 + k22)ik1
,

A4 =
1

2D0(k21 + k22)
,

a1 = − k2
ik1

,

a2 =
D0k

2
2 + J0ω

2

D0k21 − J0ω2
,

a3 = − ik1
k2

1− J0
G0
ω2 − D0

G0
k22

1− J0
G0
ω2 + D0

G0
k21
,

a4 = −1.

(B.12)

Meanwhile, the response functions ψ(x′, x), F (x′, x), and M(x′, x) can be assumed as596

ψ(x′, x) = R1
ψ(x− x′)B1(x− x′)TQ(x′)e−ik1|x−x

′| +R2
ψ(x− x′)B2(x− x′)TQ(x′)e−k2|x−x

′|

F (x′, x) = R1
F (x− x′)B1(x− x′)TQ(x′)e−ik1|x−x

′| +R2
F (x− x′)B2(x− x′)TQ(x′)e−k2|x−x

′|

M(x′, x) = R1
M (x− x′)B1(x− x′)TQ(x′)e−ik1|x−x

′| +R2
M (x− x′)B2(x− x′)TQ(x′)e−k2|x−x

′|

(B.13)

Inserting them into the first three equations of Eq. (6) with the aid of Eq. (B.10), we obtain the following linear597

equations598

− sgn(x− x′)ik1R
1
ψ(x− x′) +

R1
M (x− x′)

D0
= 0

R1
ψ(x− x′) +

R1
F (x− x′)

G0
= − sgn(x− x′)ik1

− sgn(x− x′)ik1R
1
F (x− x′) = −ρ0ω2

(B.14)

for R1
ψ(x− x′), R1

F (x− x′), R1
M (x− x′), and the linear equations599

− sgn(x− x′)k2R
2
ψ(x− x′) +

R2
M (x− x′)

D0
= 0

R2
ψ(x− x′) +

R2
F (x− x′)

G0
= − sgn(x− x′)k2

− sgn(x− x′)k2R
2
F (x− x′) = −ρ0ω2

(B.15)

for R2
ψ(x− x′), R2

F (x− x′), R2
M (x− x′). Solving these equations yields R1

ψ(x− x′), R1
F (x− x′), R1

M (x− x′), as well600

as R2
ψ(x− x′), R2

F (x− x′), and R2
M (x− x′).601

Therefore, the Green’s function in the frequency domain is602

G(ω, x− x′) = R1(x− x′)B1(x− x′)T e−ik1|x−x
′| +R2(x− x′)B2(x− x′)T e−k2|x−x

′| (B.16)

and603

R1(x) =


R1
M (x)

R1
F (x)

1

R1
ψ(x)

 , R2(x) =


R2
M (x)

R2
F (x)

1

R2
ψ(x)

 . (B.17)
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And the state vector response u(x) at x, excited by a source vector Q(x′) at x′, is given by604

u(x) =

∫
G(ω, x− x′)Q(x′)dx′. (B.18)

Appendix C. Symmetry conditions of Green’s function605

As shown in the middle panel of Fig. 2(b), the periodic actuators can be regarded as periodic scatterers, inducing606

multiple scattering effects. To account for these effects, we construct the Green’s function of the background beam607

and analyze its symmetry. The Green’s function for Eq. (6) satisfies608

ζ1G(x− x′) = δ(x− x′)I (C.1)

where the analytical expression of Green’s function is presented in Appendix B. Using the Fourier transform609

Gij(ω, k) =
1√
2π

∫ ∞

−∞
Gij(ω, x− x′)eik(x−x

′)d(x− x′), i, j = 1, 2, 3, 4. (C.2)

We find the corresponding Green’s function G(ω, k) in the frequency-wavenumber domain satisfies610

ζ(ω, k)G(ω, k) = I. (C.3)

It is evident that ζ(ω, k) satisfies ζ(ω, k) = ζ†(ω, k), ζ(ω, k) = ζT (ω,−k), and ζ(ω, k) = ζ∗(−ω,−k). Consequently,611

the Green’s function G(ω, k) also satisfies the Hermitian condition for given ω and k612

G(ω, k) = G†(ω, k), G(ω, k) = GT (ω,−k), G(ω, k) = G∗(−ω,−k) (C.4)

Using the inverse Fourier transform613

Gij(ω, x− x′) =
1√
2π

∫ ∞

−∞
Gij(ω, k)e

ik(x−x′)dk, i, j = 1, 2, 3, 4, (C.5)

the Green’s function G(ω, x− x′) satisfies the following symmetry614

G(ω, x− x′) = G†(ω, x− x′), G(ω, x− x′) = GT (ω, x′ − x), G(ω, x− x′) = G∗(−ω, x′ − x) (C.6)

Appendix D. Derivation of effective constitutive relations615

The ζ is not a singular matrix in general, so Eq. (22) can be rewritten as616

uext = ueff + ζ−1Qeff. (D.1)

In addition, through the elimination of the local source vector Q0 in Eq. (23) and Eq. (24), we find617

βuext = (I− βS)Qeffl. (D.2)
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Subtracting Eq. (D.2) by the product of β to Eq. (D.1) gives618

β
(
ueff + ζ−1Qeff

)
= (I− βS)Qeffl (D.3)

Reorganizing yields the effective constitutive relations in Eq. (25)619

Qeff =
[
(I− βS) l − βζ−1

]−1
βueff (D.4)

Appendix E. Retrieval of local polarizability tensor620

Due to the complexity of the unit cell geometry, accurately relating the local polarizability tensor β to the transfer621

functions H1(ω) and H2(ω) analytically is challenging. In this section, we employ a retrieval method to numerically622

extract the local polarizability tensor, as illustrated in Fig. 3(a). The local state vector uloc is directly obtained from623

COMSOL, while the local source vector Q is extracted using the scattering method. For each test, given the known624

uloc and Q, we obtain four equations from Eq. (11) with β as the unknown. Since the polarizability tensor contains625

16 unknowns, four independent scattering tests are conducted to construct a system of 16 equations, enabling the626

unique determination of these unknowns.627

Appendix E.1. Numerical extraction of the local source vector628

Here, we utilize the extracted displacement field in the frequency domain to inversely determine the local source629

vector Q. A unit cell is embedded in the middle of the background beam, with perfect matching layers on both630

sides (not shown). A unit transverse force is applied at a specified position in the background beam, as illustrated631

in Fig. 3(a). In this section, we use asymmetric constant transfer function with H1(ω) = 0.35 and H2(ω) = −0.25.632

According to Eq. (B.10), the analytical displacement response function at position x for an excitation applied at the633

origin is given by634

w(0, x) = B1(x)
TQ0e

−ik1|x| +B2(x)
TQ0e

−k2|x|. (E.1)

Meanwhile, the scattered displacement field is extracted from COMSOL. For each test, we perform two simulations:635

one with the transfer function set to zero and another with a nonzero transfer function. The scattered displacement636

field is then obtained by subtracting the displacement field of the zero-transfer-function case from that of the nonzero-637

transfer-function case. For the ith test, we acquire the scattered displacement vector wi = [wi(0, x1), . . . , w
i(0, xN )]T638

at positions x = [x1, x2, . . . , xN ]T . At each position, Eq. (E.1) must be satisfied, leading to639

[
B1(x1)

T e−ik1|x1| +B2(x1)
T e−k2|x1|

]
Qi = wi(0, x1)[

B1(x2)
T e−ik1|x2| +B2(x2)

T e−k2|x2|
]
Qi = wi(0, x2)

· · ·[
B1(xN )T e−ik1|xN | +B2(xN )T e−k2|xN |

]
Qi = wi(0, xN ).

(E.2)

Here, N is chosen to be greater than 4, and Qi is determined using the least squares method. To achieve the desired640

precision, a large integer N (2000 in this study) is selected. By solving the overdetermined system using the least641
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Figure E.13: Numerical extraction of the polarizability tensor. (a) Four numerical tests for extracting the polarizability tensor, along with
an additional case for verification. (b) Real part (purple dashed line) and imaginary part (red dashed line) of the scattered displacement
field from COMSOL simulations for the first case in (a), compared with the fitted response of a point source (yellow solid line for the real
part and gray solid line for the imaginary part). (c) Real part (purple dashed line) and imaginary part (red dashed line) of the scattered
displacement field from COMSOL simulations for the verification case in (a), compared with the analytical response of a point source
derived from the four tests in (a) (yellow solid line for the real part and gray solid line for the imaginary part).

squares method, we obtain642

Qi = G−1wi (E.3)

where (·)−1 denotes the Moore–Penrose pseudoinverse, and the rectangular matrix G is defined as643

G =


B1(x1)

T e−ik1|x1| +B2(x1)
T e−k2|x1|

B1(x2)
T e−ik1|x2| +B2(x2)

T e−k2|x2|

· · ·

B1(xN )T e−ik1|xN | +B2(xN )T e−k2|xN |

 (E.4)

To assess the accuracy of the inverse extraction, we compare the analytical scattered displacement field, computed644

using Eq. (E.1) with the inversely obtained Qi, against the scattered displacement field extracted from the COMSOL645

simulation for the first case, as shown in Fig. 3(b). The real and imaginary parts of both results closely match,646

except in the region very close to the unit cell, where microstructural effects become significant. This confirms that647

the point source assumption is valid for our study and that the inverse extraction method is reliable.648
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Appendix E.2. Numerical extraction of the polarizability tensor649

Now we have four local source vectors for four tests. The four local state vectors can be extracted in COMOSL650

directly. Therefore, for these four tests, the following condition is satisfied according to Eq. (11)651

Qi = βuiloc, i = 1, 2, 3, 4, (E.5)

These linear equations can also be expressed as:652

Qi = uiloc(1)β1 + uiloc(2)β2 + uiloc(3)β3 + uiloc(4)β4, i = 1, 2, 3, 4, (E.6)

where βj (j = 1, 2, 3, 4) is the jth column vector of the matrix β, and uiloc(j) (j = 1, 2, 3, 4) is the jth element of the653

vector uiloc. Eq. (E.6) can be reformulated as:654


Q1

Q2

Q3

Q4

 =


u1loc(1)I u1loc(2)I u1loc(3)I u1loc(4)I

u2loc(1)I u2loc(2)I u2loc(3)I u2loc(4)I

u3loc(1)I u3loc(2)I u3loc(3)I u3loc(4)I

u4loc(1)I u4loc(2)I u4loc(3)I u4loc(4)I




β1

β2

β3

β4

 , (E.7)

where I is the 4 × 4 identity matrix. We concatenate Qi and βi (i = 1, 2, 3, 4) to form larger vectors and assemble655

uiloc (i = 1, 2, 3, 4) into a matrix656

Q =


Q1

Q2

Q3

Q4

 , Uloc =



(
u1
loc

)T(
u2
loc

)T(
u3
loc

)T(
u4
loc

)T

 , B =


β1

β2

β3

β4

 . (E.8)

Then Eq. (E.7) can be expressed as657

Q = Uloc ⊗ IB, (E.9)

where ⊗ is the Kronecker product. Solving for B, we obtain658

B = (Uloc ⊗ I)
−1

Q (E.10)

Finally, the local polarizability matrix β is obtained by rearranging the elements of the vector B. Since the polar-659

izability matrix is generally frequency-dependent, we conduct these four tests at different frequencies and derive the660

frequency-dependent polarizability matrix function through curve fitting.661

Finally, we verify the local polarizability matrix β through a validation test, as shown in the bottom panel of662

Fig. 3(a). In this case, the source position differs from those in the four previous cases. First, the local state663

vector is extracted, and then the local source vector is determined by multiplying the local state vector by the local664

polarizability matrix. Using Eq. (E.1), the analytical scattered displacement field is then computed for the obtained665

local source vector. This analytical result is compared with the scattered displacement field extracted from the666
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COMSOL simulation in Fig. 3(c). The consistency between the two results confirms the validity of the point source667

assumption and the reliability of the retrieval method for determining the polarizability matrix.668

Appendix F. Interpretation of nonlocal effective parameters669

According to our effective medium theory, the effective parameters in Eq. (25) depend on both frequency and670

wavenumber. However, for freely propagating waves, frequency and wavenumber are not independent but must satisfy671

the dispersion relation given in Eq. (47). This implies that the effective parameters are physically meaningful only672

at frequencies and wavenumbers that lie on the dispersion curves corresponding to freely traveling waves. This raises673

an apparent paradox: whether the effective parameters remain meaningful for arbitrary frequency and wavenumber,674

or whether the assumption of independent frequency and wavenumber in the effective parameters requires further675

justification.676

To treat frequency and wavenumber as independent variables, we must consider waves under external excitation.677

We begin by introducing a traveling wave excitation of the form678

Qext(x, t) = Qext(ω, k)e
i(kx−ωt) (F.1)

where Qext(ω, k) represents the amplitude, which depends on both frequency and wavenumber. The solution to Eq.679

(43) can then be expressed as680

ueff(x, t) = ueff(ω, k)e
i(kx−ωt) (F.2)

where the amplitude vector satisfies681

ueff(ω, k) = H(ω, k)−1Qext(ω, k). (F.3)

If the frequency and wavenumber satisfy the dispersion relation, H(ω, k) becomes singular, causing the amplitude vec-682

tor to diverge, similar to resonance in vibrational systems. To eliminate this singularity, damping can be introduced683

into the system, ensuring that the amplitude vector remains finite. Conversely, if the frequency and wavenumber do684

not satisfy the dispersion relation, H(ω, k) remains nonsingular, and the amplitude vector is naturally finite. In this685

case, the amplitude vector depends on H(ω, k), which in turn is determined by the effective parameters, allowing686

frequency and wavenumber to be treated as independent variables.687

Next, we consider a more realistic harmonic excitation of the form688

Qext(x, t) = Qext(ω, x)e
−iωt, (F.4)

which can be expanded as689

Qext(x, t) =
e−iωt√
2π

∫ ∞

−∞
Qext(ω, k)e

ikxdk. (F.5)

For each Fourier component Qext(ω, k), the corresponding response is given by ueff(ω, k). Using the principle of690

superposition, the total response can be written as691

ueff(t, x) =
e−iωt√
2π

∫ ∞

−∞
H(ω, k)−1Qext(ω, k)e

ikxdk. (F.6)
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This result shows that the state vector response depends on the effective parameters for arbitrary frequency and692

wavenumber. Therefore, in the context of excitation problems, frequency and wavenumber can be treated as inde-693

pendent variables. Furthermore, this approach offers greater flexibility in modulating the effective parameters, as694

both frequency and wavenumber can be controlled. For example, a gradient medium with slowly varying properties695

can be designed using the WKB approximation to develop an elastic ray theory, enabling novel wave propagation696

phenomena (Wang et al., 2023).697
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1. General properties of nonlocal odd Willis metabeam1

Previous studies focus on the discussion of properties of local Willis media. But the Willis media from dynamic2

homogenization are nonlocal. Here we extend the study to properties of nonlocal odd Willis media. Pernas-Salomón3

and Shmuel (2020a) used nonlocal constitutive relations.4
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1.1. Broken parity symmetry, correct!5

1.1.1. Symmetry analysis of macroscopic media6

In classical physics, a parity transformation refers to a spatial inversion that changes the sign of spatial coordinates.7

In one dimension, it is equivalent to the reflection or mirror transformation. Mathematically, it is expressed as8

x
P−→ −x. (1)

where P denotes the parity transformation. In the reciprocal space, it can be expressed as9

k
P−→ −k. (2)

Since Meff(ω, k), µeff(ω, k), κeff(ω, k), and γeff(ω, k) are symmetric with respect to x = 0, while Feff(ω, k),10

Jeff(ω, k), γeff(ω, k), and φeff(ω, k) are antisymmetric with respect to x = 0, it follows that Meff(ω, k), µeff(ω, k),11

κeff(ω, k), and γeff(ω, k) have even parity, whereas Feff(ω, k), Jeff(ω, k), γeff(ω, k), and φeff(ω, k) have odd parity.12

This can be expressed as13

Meff(ω, k)
P−→Meff(ω,−k),

Feff(ω, k)
P−→ −Feff(ω,−k),

µeff(ω, k)
P−→ µeff(ω,−k),

Jeff(ω, k)
P−→ −Jeff(ω,−k),

κeff(ω, k)
P−→ κeff(ω,−k),

γeff(ω, k)
P−→ −γeff(ω,−k),

veff(ω, k)
P−→ veff(ω,−k),

φeff(ω, k)
P−→ −φeff(ω,−k).

(3)

We define E = [ε,p]T , Σ = [σ,v]T and constitutive relation in Eq. (??) as14

E = SΣ. (4)

It can be rewritten as the matrix form15

Σ(ω,−k) = PΣ(ω, k), E(ω,−k) = PE(ω, k) (5)

where κ is the complex conjugation operator and16

P =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 (6)

For the system with parity symmetry, the governing equations of a system must remain form-invariant under parity17

symmetry. Therefore, we have the following equations after parity transformation18

E(ω,−k) = S(ω,−k)Σ(ω,−k) (7)
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Therefore, we have19

S(ω,−k) = PS(ω, k)P−1 (8)

Substituting Eq. (18) into Eq. (20), we have20

S(ω,−k) =


S11(ω, k) −S12(ω, k) S13(ω, k) −S14(ω, k)

−S21(ω, k) S22(ω, k) −S23(ω, k) S24(ω, k)

S31(ω, k) −S32(ω, k) S33(ω, k) −S34(ω, k)

−S41(ω, k) S42(ω, k) −S43(ω, k) S44(ω, k)

 (9)

If parity symmetry is preserved, S(ω,−k) must be equal to S(ω, k), leading to the result21

S11(ω,−k) = S11(ω, k), S12(ω,−k) = −S12(ω, k), S13(ω,−k) = S13(ω, k) S14(ω,−k) = −S14(ω, k),

S21(ω,−k) = −S21(ω, k), S22(ω,−k) = S22(ω, k), S23(ω,−k) = −S23(ω, k), S24(ω,−k) = S24(ω, k),

S31(ω,−k) = S31(ω, k), S32(ω,−k) = −S32(ω, k), S33(ω,−k) = S33(ω, k), S34(ω,−k) = −S34(ω, k),

S41(ω,−k) = −S41(ω, k), S42(ω,−k) = S42(ω, k), S43(ω,−k) = −S43(ω, k), S44(ω,−k) = S44(ω, k).

(10)

With parity symmetry, the nonlocal Willis couplings (k ̸= 0) can still be nonzero but must satisfy the symmetry22

conditions given in Eq. (22). This contrasts with the case of a local Willis metabeam (k = 0), where broken parity is23

necessary for the emergence of Willis couplings (Liu et al., 2019). Under long wave condition k → 0, antisymmetric24

coefficients must vanish and we obtain25

S12(ω) = S13(ω) = S21(ω) = S24(ω) = S31(ω) = S34(ω) = S42(ω) = S43(ω) = 0 (11)

For the conventional Willis media, the local Willis couplings (k = 0) vanish when the system preserve the parity26

symmetry (Liu et al., 2019; Pernas-Salomón and Shmuel, 2020a,b; Li et al., 2022, 2024; Qu et al., 2022). However,27

the local Willis couplings S14(ω), S23(ω), S32(ω), and S41(ω) of our metabeam still exist when the system has the28

parity symmetry. Additionally, when our metabeam preserves parity symmetry, the off-diagonal local elastic and29

density constants are zero, while the diagonal local elastic and density constants remain nonzero.30

1.1.2. Symmetry of analysis of microscopic media31

Through sensor actuator system, it is possible to break the parity symmetry of the microscopic (local) constitutive32

relation. Now we prove the equalities of macroscopic constitutive coefficients can be broken from our microscopic33

constitutive relation. For the local constitutive matrix, if the system preserve parity symmetry, the elements in34

constitutive matrix must satisfy35

β12(ω) = β13(ω) = β21(ω) = β24(ω) = β31(ω) = β34(ω) = β42(ω) = β43(ω) = 0 (12)

In homogenization, prove that parity symmetry should be broken for nonzero Willis couplings. As long as these36

equalities are broken, the parity symmetry is broken. But the broken of parity symmetry of macroscopic material37

constants are dependent on the local material constants.38
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1.2. Time-reversal symmetry39

1.2.1. Symmetry analysis of macroscopic media40

In classical physics, a parity transformation refers to a spatial inversion that changes the sign of spatial coordinates.41

In one dimension, it is equivalent to the reflection or mirror transformation. Mathematically, it is expressed as42

t
T−→ −t. (13)

where P denotes the parity transformation. In the reciprocal space, it can be expressed as43

ω
T−→ −ω. (14)

Since Meff(ω, k), µeff(ω, k), κeff(ω, k), and γeff(ω, k) are symmetric with respect to x = 0, while Feff(ω, k),44

Jeff(ω, k), γeff(ω, k), and φeff(ω, k) are antisymmetric with respect to x = 0, it follows that Meff(ω, k), µeff(ω, k),45

κeff(ω, k), and γeff(ω, k) have even parity, whereas Feff(ω, k), Jeff(ω, k), γeff(ω, k), and φeff(ω, k) have odd parity.46

This can be expressed as47

Meff(ω, k)
P−→Meff(ω,−k),

Feff(ω, k)
P−→ Feff(ω,−k),

µeff(ω, k)
P−→ −µeff(ω,−k),

Jeff(ω, k)
P−→ −Jeff(ω,−k),

κeff(ω, k)
P−→ κeff(ω,−k),

γeff(ω, k)
P−→ γeff(ω,−k),

veff(ω, k)
P−→ −veff(ω,−k),

φeff(ω, k)
P−→ −φeff(ω,−k).

(15)

We define E = [ε,p]T , Σ = [σ,v]T and constitutive relation in Eq. (??) as48

E = SΣ. (16)

It can be rewritten as the matrix form49

Σ(−ω, k) = TΣ(ω, k), E(−ω, k) = TE(ω, k) (17)

where κ is the complex conjugation operator and50

T =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 (18)

For the system with parity symmetry, the governing equations of a system must remain form-invariant under parity51

symmetry. Therefore, we have the following equations after parity transformation52

E(−ω, k) = S(−ω, k)Σ(−ω, k) (19)
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Therefore, we have53

S(−ω, k) = TS(ω, k)T−1 (20)

Substituting Eq. (18) into Eq. (20), we have54

S(ω,−k) =


S11(ω, k) S12(ω, k) −S13(ω, k) −S14(ω, k)

S21(ω, k) S22(ω, k) −S23(ω, k) S24(ω, k)

−S31(ω, k) −S32(ω, k) S33(ω, k) S34(ω, k)

−S41(ω, k) −S42(ω, k) S43(ω, k) S44(ω, k)

 (21)

If parity symmetry is preserved, S(ω,−k) must be equal to S(ω, k), leading to the result55

S11(ω,−k) = S11(ω, k), S12(ω,−k) = S12(ω, k), S13(ω,−k) = −S13(ω, k) S14(ω,−k) = −S14(ω, k),

S21(ω,−k) = S21(ω, k), S22(ω,−k) = S22(ω, k), S23(ω,−k) = −S23(ω, k), S24(ω,−k) = −S24(ω, k),

S31(ω,−k) = −S31(ω, k), S32(ω,−k) = −S32(ω, k), S33(ω,−k) = S33(ω, k), S34(ω,−k) = S34(ω, k),

S41(ω,−k) = −S41(ω, k), S42(ω,−k) = −S42(ω, k), S43(ω,−k) = S43(ω, k), S44(ω,−k) = S44(ω, k).

(22)

With parity symmetry, the nonlocal Willis couplings (k ̸= 0) can still be nonzero but must satisfy the symmetry56

conditions given in Eq. (22). This contrasts with the case of a local Willis metabeam (k = 0), where broken57

parity is necessary for the emergence of Willis couplings (Liu et al., 2019). Under low frequency condition ω → 0,58

antisymmetric coefficients must vanish and we obtain59

S13(k) = S14(k) = S23(k) = S24(k) = S31(k) = S32(k) = S41(k) = S42(k) = 0 (23)

For the conventional Willis media, the local Willis couplings (k = 0) vanish when the system preserve the parity60

symmetry (Liu et al., 2019; Pernas-Salomón and Shmuel, 2020a,b; Li et al., 2022, 2024; Qu et al., 2022). However,61

the local Willis couplings S14(ω), S23(ω), S32(ω), and S41(ω) of our metabeam still exist when the system has the62

parity symmetry. Additionally, when our metabeam preserves parity symmetry, the off-diagonal local elastic and63

density constants are zero, while the diagonal local elastic and density constants remain nonzero.64

1.3. Broken Energy Conservation and Major Symmetry65

In the spacetime domain, it is66

Se(t− t′, x− x′) =
1

2

C(t− t′, x− x′) +CT (t′ − t, x′ − x) B(t− t′, x− x′)−DT (t′ − t, x′ − x)

D(t− t′, x− x′)−BT (t′ − t, x′ − x) ρ(t− t′, x− x′) + ρT (t′ − t, x′ − x)


So(t− t′, x− x′) =

1

2

C(t− t′, x− x′)−CT (t′ − t, x′ − x) B(t− t′, x− x′) +DT (t′ − t, x′ − x)

D(t− t′, x− x′) +BT (t′ − t, x′ − x) ρ(t− t′, x− x′)− ρT (t′ − t, x′ − x)

 (24)
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where67

Se(t− t′, x− x′) =

Ce(t− t′, x− x′) Be(t− t′, x− x′)

De(t− t′, x− x′) ρe(t− t′, x− x′)


So(t− t′, x− x′) =

Co(t− t′, x− x′) Bo(t− t′, x− x′)

Do(t− t′, x− x′) ρo(t− t′, x− x′)

 (25)

For spatially and frequency dispersive media, the generalized force vector Σ(t, x) depends nonlocally on the strain68

field E(t′, x′) and may involve memory effects due to dispersion.69

The instantaneous power density at r is:70

P (t, x) = σT (t, x)
∂ε(t, x)

∂t
+ pT (t, x)

∂v(t, x)

∂t
. (26)

The total work over the length L is:71

W (t) =

∫
x

[
σT (t, x)

∂ε(t, x)

∂t
+ pT (t, x)

∂v(t, x)

∂t

]
dx. (27)

The net work done over a complete cycle T is:72

Wcycle =

∫ T

0

W (t)dt =

∫ T

0

∫
x

[
σT (t, x)

∂ε(t, x)

∂t
+ pT (t, x)

∂v(t, x)

∂t

]
dxdt. (28)

Substitute the constitutive relationship:73

ε(t, x) =

∫
x

∫ t

−∞
C(t− t′, x− x′)σ(t′, x′)dt′dx′ +

∫
x

∫ t

−∞
B(t− t′, x− x′)v(t′, x′)dt′dx′.

pT (t, x) =

∫
x

∫ t

−∞
σT (t′, x′)DT (t− t′, x− x′)dt′dx′ +

∫
x

∫ t

−∞
vT (t′, x′)ρT (t− t′, x− x′)dt′dx′.

(29)

Thus:74

Wcycle =WC
cycle +WB

cycle +WD
cycle +Wσ

cycle (30)

where75

WC
cycle =

∫ T

0

∫
x

∫
x

∫ t

−∞
σT (t, x)

∂C(t− t′, x− x′)

∂t
σ(t′, x′)dt′dx′dxdt

WB
cycle =

∫ T

0

∫
x

∫
x

∫ t

−∞
σT (t, x)

∂B(t− t′, x− x′)

∂t
v(t′, x′)dt′dx′dxdt

WD
cycle =

∫ T

0

∫
x

∫
x

∫ t

−∞
σT (t′, x′)DT (t− t′, x− x′)

∂v(t, x)

∂t
dt′dx′dxdt

Wσ
cycle =

∫ T

0

∫
x

∫
x

∫ t

−∞
vT (t′, x′)

∂ρ(t− t′, x− x′)

∂t
v(t′, x′)dt′dx′dxdt

(31)
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Now we integrate by parts in t, treating ∂E1(t, x)/∂t as the derivative term, and we have:76

WC
cycle =

∫ T

0

∫
x

∫
x

∫ t

−∞
σT (t, x)

∂C(t− t′, x− x′)

∂(t− t′)
σ(t′, x′)dt′dx′dxdt

=
1

2

∫ T

0

∫
x

∫
x

∫ t

−∞
σT (t, x)

∂C(t− t′, x− x′)

∂(t− t′)
σ(t′, x′) + σT (t′, x′)

∂C(t′ − t, x′ − x)

∂(t′ − t)
σ(t, x)dt′dx′dxdt

=
1

2

∫ T

0

∫
x

∫
x

∫ t

−∞
σT (t, x)

[
∂
(
C(t− t′, x− x′)−CT (t′ − t, x′ − x)

)
∂(t− t′)

]
σ(t′, x′)dt′dx′dxdt

=
1

2

∫ T

0

∫
x

∫
x

∫ t

−∞
σT (t, x)

∂Co(t′ − t, x′ − x)

∂(t− t′)
σ(t′, x′)dt′dx′dxdt

(32)

For a cyclic process, E1(t, x) returns to its initial state after one cycle, so the first term on the right-hand side77

vanishes. If Codd(t′ − t, x′ − x) is not equal to 0, then there is always some cyclic deformation such that WC
cycle ̸= 0.78

Similarly, if σodd(t′ − t, x′ − x) is not equal to 0, then there is always some cyclic deformation such that Wσ
cycle ̸= 0.79

Now we integrate by parts in t, treating ∂E2(t, x)/∂t as the derivative term in WD
cycle, and we have:80

WD
cycle =

[∫
x

∫
x

∫ t

−∞
σT (t′, x′)DT (t− t′, x− x′)v(t, x)dt′dx′dx

]T
0

−
∫ T

0

∫
x

∫
x

∫ t

−∞
σT (t′, x′)

∂DT (t− t′, x− x′)

∂t
v(t, x)dt′dx′dxdt

(33)

WB
cycle +WD

cycle

=

∫ T

0

∫
x

∫
x

∫ t

−∞
σT (t, x)

∂B(t− t′, x− x′)

∂(t− t′)
v(t′, x′)− σT (t′, x′)

∂DT (t− t′, x− x′)

∂(t− t′)
v(t, x)dt′dx′dxdt

=

∫ T

0

∫
x

∫
x

∫ t

−∞
σT (t, x)

∂
(
B(t− t′, x− x′) +DT (t− t′, x− x′)

)
∂(t− t′)

v(t′, x′)dt′dx′dxdt

=

∫ T

0

∫
x

∫
x

∫ t

−∞
ET
2 (t

′, x′)Bodd(t− t′, x− x′)E1(t, x)dt
′dx′dxdt

(34)

If Bodd(t′ − t, x′ − x) is not equal to 0, then there is always some cyclic deformation such that WC
cycle ̸= 0. Finally,81

we find that the odd constitutive matrix induces the nonzero cyclic work and breaks the major symmetry of the82

constitutive matrix.83

In the reciprocal space, the even and odd constitutive matrices can be obtained from Fourier’s transform and84

they are given as85 Ce(ω, k) Be(ω, k)

De(ω, k) ρe(ω, k)

 =
1

2

C(ω, k) +CT (−ω,−k) B(ω, k)−DT (−ω,−k)

D(ω, k)−BT (−ω,−k) ρ(ω, k) + ρT (−ω,−k)


Co(ω, k) Bo(ω, k)

Do(ω, k) ρo(ω, k)

 =
1

2

C(ω, k)−CT (−ω,−k) B(ω, k) +DT (−ω,−k)

D(ω, k) +BT (−ω,−k) ρ(ω, k)− ρT (−ω,−k)

 (35)

If odd couplings do not exist, the odd constitutive matrix vanishes86

C(ω, k) = CT (−ω,−k), B(ω, k) = DT (−ω,−k), ρ(ω, k) = ρT (−ω,−k), (36)
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Using Eq. (??), we have87

C(ω, k) = C†(ω, k), B(ω, k) = −D†(ω, k), ρ(ω, k) = ρ†(ω, k), (37)

which is consistent with the symmetry condition from the microscopic analysis in Eq. (??).88

1.4. Broken Maxwell–Betti reciprocity89

In the media without frequency dispersion and spatial dispersion, the Maxwell–Betti reciprocity is equivalent to90

the zero cyclic work. However, with frequency dispersion and spatial dispersion, the Maxwell–Betti reciprocity is not91

equivalent to the zero cyclic work. Here we derive the equivalent condition for Maxwell–Betti reciprocity. And then92

introduce how to break Maxwell–Betti reciprocity using our sensor-actuator system.93

Next, we prove that the asymmetric constitutive relation implies the breakdown of Maxwell-Betti reciprocity.94

In the frequency domain, the governing equations in Eq. (??) can be rewritten as95


0 0 0 −∂x
0 0 −∂x 1

0 ∂x 0 0

∂x 1 0 0


σ(ω, x)
w(ω, x)

+

∫ ∞

−∞

 C(ω, x− x′) −iωB(ω, x− x′)

−iωD(ω, x− x′) −ω2ρ(ω, x− x′)

σ(ω, x− x′)

w(ω, x− x′)

 dx′ = Q, (38)

The Maxwell–Betti reciprocity theorem states that for a linear elastic system, the work done by one set of forces96

acting through the displacements caused by a second set of forces is equal to the work done by the second set of97

forces acting through the displacements caused by the first set. Mathematically:98

∫
L

uT
2 (ω, x)Q1(ω, x) dx =

∫
L

uT
1 (ω, x)Q2(ω, x) dx, (39)

where: Q1 and Q2 are two different distributions of body forces. u1 and u2 are the corresponding displacement99

fields caused by Q1 and Q2, respectively. L is the length of the metabeam. The left hand side is100

uT
2 (ω, x)Q1(ω, x)

= −∂x (F2(ω, x)w1(ω, x))− ∂x (M2(ω, x)ψ1(ω, x)) + ∂xF2(ω, x)w1(ω, x) + ∂xM2(ω, x)ψ1(ω, x)

+ w2(ω, x)∂xF1(ω, x) + ψ2(ω, x)∂xM1(ω, x) + F2(ω, x)ψ1(ω, x) + F1(ω, x)ψ2(ω, x)

+

∫ ∞

−∞

[
σ2(ω, x) w2(ω, x)

] C(ω, x− x′) −iωB(ω, x− x′)

−iωD(ω, x− x′) −ω2ρ(ω, x− x′)

σ1(ω, x
′)

w1(ω, x
′)

 dx′
(40)

while101

uT
1 (ω, x)Q2(ω, x)

= −∂x (F1(ω, x)w2(ω, x))− ∂x (M1(ω, x)ψ2(ω, x)) + ∂xF1(ω, x)w2(ω, x) + ∂xM1(ω, x)ψ2(ω, x)

+ w1(ω, x)∂xF2(ω, x) + ψ1(ω, x)∂xM2(ω, x) + F1(ω, x)ψ2(ω, x) + F2(ω, x)ψ1(ω, x)

+

∫ ∞

−∞

[
σ1(ω, x) w1(ω, x)

] C(ω, x− x′) −iωB(ω, x− x′)

−iωD(ω, x− x′) −ω2ρ(ω, x− x′)

σ2(ω, x
′)

w2(ω, x
′)

 dx′
(41)
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For the reciprocal media, we have102

C(ω, k) = CT (ω,−k), B(ω, k) = DT (ω,−k), ρ(ω, k) = ρT (ω,−k). (42)

For nonlocal elasticity, ui(r) at a point r depends not just on ui(r) at the same point, but also on forces at all103

other points r′, via a nonlocal elastic tensor kernel.104

This generalization means that stress at r is influenced by strains over the entire body, mediated by the kernel105

Cijkl(r, r
′). 3. Symmetry from Maxwell–Betti Reciprocity106

To derive the symmetry condition for Cijkl(r, r
′), we use the Maxwell–Betti reciprocity theorem applied to work107

contributions:108

The Maxwell–Betti reciprocity theorem can be derived from major symmetry and time-reversal symmetry Altman109

and Suchy (2011).110

1.5. Causality and Kramers–Kronig relations111

Here we merely refer to the principle of causality owing to which the induction at the instant I is determined only112

by the present field and the field at previous times t′ ≤ t113

The constitutive relation in reciprocal space depends on both frequency and wavenumber, indicating nonlocality114

in both spatial and temporal domains.115

S(x, t) =

S(x, t), if |x| < ct,

0, otherwise ,
(43)

In the space-time domain, the nonlocal constitutive relations for spatially and temporally homogeneous media can116

be written as (Leontovich, 1961; Sun and Puri, 1989; Shokri and Rukhadze, 2019)117

E(t, x) =

∫ t

0

dt′
∫ ct′

−ct′
dx′S(x− x′, t− t′)Σ(t′, x′), (44)

where c represents the maximum group velocity of a Timoshenko beam. The group velocity of a Timoshenko beam118

converges to c = 1 as k → ∞; therefore, the maximum group velocity can be considered c = 1. The limits of119

integration for τ are restricted to [0,∞), and for ξ, they range from −cτ to cτ , as dictated by the causality condition.120

This condition ensures that the response signal at x occurs only after the time required for the signal, excited at121

x− ξ, to travel the distance to x. Considering the plane wave propagation in the media, the above equation can be122

written as123

E(k, ω) = S(k, ω)Σ(k, ω) (45)

where124

S(ω, k) =

∫ ∞

0

eiωtdt

∫ ct

−ct

S(x, t)eikxdx. (46)

and125

S(t, x) =

∫ ∞

−∞

∫ ∞

−∞
S(ω, k)e−ikx−iωtdωdk. (47)
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Therefore, we have126

S(ω, k) =
1

4π2

∫ ∞

0

eiωtdt

∫ ct

−ct

∫ ∞

−∞

∫ ∞

−∞
S (ω′, k′) e−iω′t−ik′x+ikxdω′dk′dx

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
S (ω′, k′) dω′dk′

∫ ∞

0

ei(ω−ω′)tdt

∫ ct

−ct

ei(k−k′)xdx

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
S (ω′, k′) dω′dk′

∫ ∞

0

1

i (k − k′)

[
ei(ω−ω′+ck−ck′)t − ei(ω−ω′−ck′−ck)t

]
dt

(48)

We add a small imaginary part iδ, where δ > 0, in order for the integration to converge over time:127

S(ω, k) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

S (ω′, k′)

i (k − k′)

(
−1

i (ω − ω′ + c(k − k′) + iδ)
+

1

i (ω − ω′ + c(k′ − k) + iδ)

)
dω′dk′

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

−2S (ω′, k′) dω′dk′

(ω − ω′ + c(k′ − k) + iδ) (ω − ω′ + c(k − k′) + iδ)

= − 1

2π2

∫ ∞

−∞

∫ ∞

−∞

S (ω′, k′)

(ω − ω′ + c(k′ − k) + iδ) (ω − ω′ + c(k − k′) + iδ)
dω′dk′

(49)

Considering that σ(ω, k) is analytic in the upper half of the ω-plane for a fixed k, the result of the integration should128

be of the form129

S(ω, k) =
1

2πi

∫ ∞

−∞

S (ω′, k + (ω′ − ω)/c)

(ω′ − ω − iδ)
dω′ (50)

Using Plemelj formula, the wavenumber-dependent Kramers-Kronig relations are130

Re[S(ω, k)] =
1

π
P

∫ ∞

−∞

Im [S (ω′, k + (ω′ − ω)/c)]

ω′ − ω
dω′

Im[S(ω, k)] = − 1

π
P

∫ ∞

−∞

Re [S (ω′, k + (ω′ − ω)/c)]

ω′ − ω
dω′

(51)

If signal propagating velocity c→ ∞, the Kramers-Kronig relations are reduced into131

Re[S(ω, k)] =
1

π
P

∫ ∞

−∞

Im [S (ω′, k)]

ω′ − ω
dω′

Im[S(ω, k)] = − 1

π
P

∫ ∞

−∞

Re [S (ω′, k)]

ω′ − ω
dω′

(52)
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on a structured beam. Physical Review X, 9(1):011040.142

Pernas-Salomón, R. and Shmuel, G. (2020a). Fundamental principles for generalized willis metamaterials. Physical143

Review Applied, 14(6):064005.144

Pernas-Salomón, R. and Shmuel, G. (2020b). Symmetry breaking creates electro-momentum coupling in piezoelectric145

metamaterials. Journal of the Mechanics and Physics of Solids, 134:103770.146

Qu, H., Liu, X., and Hu, G. (2022). Mass-spring model of elastic media with customizable willis coupling. Interna-147

tional Journal of Mechanical Sciences, 224:107325.148

Shokri, B. and Rukhadze, A. A. (2019). Electrodynamics of Conducting Dispersive Media. Springer.149

Sun, J. G. and Puri, A. (1989). Kramers-kronig relations in media with spatial dispersion. Optics communications,150

70(1):33–37.151

11


	Introduction
	Effective medium theory of nonlocal non-Hermitian Willis metabeam
	Fundamental Equations of the Timoshenko Beam
	Response of the background beam under external sources
	Response of the effective metabeam under external sources
	Local response at microscopic scale
	Multiple scattering at mesoscropic scale
	Effective constitutive relations
	Governing equations and boundary value problem

	Validation of the effective medium theory
	Wave phenomena in non-Hermitian Willis beam
	Dispersion curves and mode characterization of flexural waves
	The broken reciprocity theorem
	Bulk-boundary correspondence
	Winding number of the frequency spectrum under PBC
	Asymptotic analysis of the frequency spectrum under OBC
	Bulk-boundary correspondence


	Application
	Nonreciprocal filtering and amplification
	Non-Hermitian interface modes and its potential application in energy harvest


	Conclusion
	Geometric and material parameters
	Green's function
	Displacement response in Timoshenko beam
	The Green's function

	Symmetry conditions of Green's function
	Derivation of effective constitutive relations
	Retrieval of local polarizability tensor
	Numerical extraction of the local source vector
	Numerical extraction of the polarizability tensor

	Interpretation of nonlocal effective parameters

