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ABSTRACT

Wave reflection and refraction at a time interface follow different conservation laws compared to conventional scattering
at a spatial interface. This study presents the experimental demonstration of refraction and reflection of flexural waves
across a temporal boundary in a continuum-based mechanical metabeam, and unveils opportunities that emerge by tailoring
temporal scattering phenomena for phononic applications. We observe these phenomena in an elastic beam attached to an
array of piezoelectric patches that can vary in time the effective elastic properties of the beam. Frequency conversion and
phase conjugation are observed upon a single temporal interface. These results are consistent with the temporal Snell’s law
and Fresnel equations for temporal interfaces. Further, we illustrate the manipulation of amplitude and frequency spectra
of flexural wave temporal refraction and reflection through multi-stepped temporal interfaces. Finally, by implementing a
smooth time variation of wave impedance, we numerically and experimentally demonstrate the capabilities of the temporal
metabeam to realize waveform morphing and information coding. Our findings lay the foundation for developing time-mechanical
metamaterials and time-phononic crystals, offering new avenues for advanced phonon manipulation in both wave amplitude
and frequency.

Introduction1

Wave propagation in time-varying media exhibits dynamics that are strikingly different from those in space-varying media1–3.2

The breaking of time translation symmetry allows energy exchange between the wave and the time-varying medium due to3

Noether’s theorem4, 5, leading to phenomena such as frequency manipulation6, wave amplification7, and self-emission8–10.4

Additionally, the Kramers–Kronig relations, grounded in the principle of causality in time-varying systems, enable these5

systems to surpass well-established fundamental performance limits, including the Bode-Fano limit, Rozanov bound, and Chu6

limit11–14.7

Despite these differences, wave propagation in time-varying media and space-varying media share notable analogies. Space-8

time duality suggests that phenomena observed in spatially varying systems generally have analogous temporal versions, and9

vice versa15–17. In suddenly varying systems, phenomena analogous to wave scattering at spatial interfaces—such as reflection10

and refraction18–22, anti-reflection coatings23, total internal reflection24, Goos–Hänchen effect25, 26, wave holography27, double11

slit diffraction28, and photon collisions29, can occur at temporal interfaces. Moreover, in periodic and disordered systems,12

temporal analogs such as time crystals30–32, disordered time-varying media33–35, k-band gaps36, the topology of k-bands and13

corresponding temporal interface modes37, and k-gap solitons and breathers38, 39, have been developed. In slowly (adiabatically)14

varying systems, perfect state transitions such as controllable frequency shifts40–42, topological state pumping43, 44, and15

non-Abelian braiding45, 46 have been achieved in both space-varying and time-varying systems.16

Among these phenomena, wave refraction and reflection at temporal interfaces, are considered one of the most fundamental17

phenomena, at the foundations of time crystals, yet they are often challenging to achieve in practical wave systems. One of the18

key challenges is the creation of a temporal boundary, which typically requires a spatially uniform, ultrafast, and large change of19



Figure 1. Design of a time-varying metabeam. a A segment of the time-varying metabeam designed to enable temporal
scattering phenomena, such as temporal refraction and reflection, includes a unit cell equipped with a piezoelectric patch and
voltage excitation (lighting sign), where the time-varying transfer function is implemented using an electric circuit network. b
A plot illustrating a time-varying transfer function H(t), which includes both smooth and step changes over time. c A graph
showing the variation in effective bending stiffness as a function of both frequency f and time t, based on the time-varying
transfer function H(t) from (b). Here, the bending stiffness D0 in open circuit status is 0.88 N ·m2. d The effective bending
stiffness D(t) plotted over time along the gray dashed line in (c), illustrating its time-dependent behavior. e Photo of the
metabeam connected with time-varying electronic circuits labeled in each unit cell.

wave impedance19, 47. The associated experimental challenges have kept the experimental study of wave scattering at temporal20

interfaces in its infancy, particularly in the context of elastic media. Recently, the observation of temporal refraction and21

reflection has been reported for electromagnetic waves leveraging transmission-line metamaterials19, 21. A temporal phononic22

interface consisting of discrete repelling magnets controlled by electromagnetic coils was also introduced to demonstrate the23

temporal refraction of elastic waves48. However, a temporal interface in elastic continuum media, enabling temporal scattering24

of flexural waves and the associated wave phenomena, has remained unexplored to date. Furthermore, wave scattering theory at25

temporal interfaces has been mostly formulated within the framework of electromagnetics, leaving elastic counterparts, such as26

Snell’s law, Fresnel equations, and the principle of elastic momentum conservation, largely unexamined.27

Elastic beams, equipped with piezoelectric patches connected to digital and analog circuits, provide an excellent platform28

to achieve unconventional elastic wave phenomena, including the non-Hermitian skin effect49, odd mass density50, Willis29

responses51, frequency conversion52, and topological pumping53. In this study, we demonstrate temporal interfaces for elastic30

waves using the array of piezoelectric patches controlled by time-varying switching circuits that can produce a rapid, steplike31

change in effective bending stiffness. The measured frequency conversion provides evidence of temporal refraction in a32

continuum-based elastic system, and our developed theoretical model matches the experimental observation. By introducing33

multiple temporal interfaces, we demonstrate further control over the manipulation of flexural waves in both amplitude and34

frequency spectra. Finally, by programming a smooth time-varying transfer function to realize more adiabatic time interfaces,35

we demonstrate additional capabilities in shaping the time-scattered waves in periodic and aperiodic fashion for smart waveform36

morphing and information coding.37

Results38

A time-varying metabeam supporting temporal interfaces39

The time-varying metamaterial under analysis consists of a long, thin beam where bending is the primary mode of deformation.40

Each unit cell of this metabeam is equipped with a piezoelectric patch that senses bending deformation and provides a41

self-response. The patch acts as a sensor by generating a voltage proportional to the elongation or contraction of the beam’s42

top surface (see Fig. 1a). The time-dependent transfer function, H(t), comprises an analog switch, a microcontroller, and43

a time-varying digital potentiometer R1(t), defined as H(t) = R1(t)/(R2C)54–56, as illustrated in Fig. 1b. As a result, the44

piezoelectric patch also serves as a mechanical actuator, elongating and contracting in response to the applied voltage, and45
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Figure 2. Refraction and reflection of flexural waves at a temporal interface. a, c The spacetime diagram of experimental
(a) and simulated (c) wave scattering at a temporal interface t1 = 0.44 ms for an incident wave packet consisting of 3 cycles in
the time domain with t f = 1.1 ms. The metabeam is positioned within the interval (0,L), while the surrounding regions consist
of an aluminum beam. The angles αi, α1, and α ′

1 represent the incident, refracted, and reflected angles, respectively. In a, these
angles are 49◦, 52◦, and 52.5◦, while in c, they are 47◦, 50.5◦, and 51◦. b, d The top, middle, and bottom panels display the
experimental (b) and simulated (d) contour diagrams of the refracted, incident, and reflected waves, respectively. The data is
obtained from a 2D Fourier transformation of the experimental and simulated data shown in (a) and (c). The incident frequency
f0 is 6.2 kHz and the incident wavenumber k0 is 119 rad/m. The white lines indicate dispersion curves from unit cell analysis. e
The normalized incident (w̄i) and reflected (w̄r) signals measured at x/L = 0.05, along with the refracted signal (w̄t ) observed
at x/L = 1. f Spectral analysis of the time-domain signals from (e). Here, f0, ft , and fr are the spectral peak frequencies of
incident, refracted, and reflected waves, respectively. g The incident spatial profile (w̄i) measured at t/t f = 1/3, along with the
refracted (w̄t ) and reflected (w̄r) spatial profiles at t/t f = 2/3. h Spectral analysis of the spatial-domain signals from (g). Here,
k0, kt , and kr are the spectral peak wavenumbers of incident, refracted, and reflected waves, respectively.

thereby modifying the effective bending stiffness of the beam. To evaluate the performance of the metabeam, we numerically46

calculated the time-varying effective bending stiffness using COMSOL simulations (see Supplementary Section 1 for details).47

The resultant effective time-varying bending stiffness of the metabeam D(t) across different frequencies and times can be48

found in Fig. 1c. Specifically, Fig. 1d illustrates the effective bending stiffness as a function of time for a particular frequency,49

intersected by the orange surface in Fig. 1c.50

We conducted a thorough experimental investigation of the refraction and reflection of flexural waves at a temporal interface.51

We employ a one-dimensional metabeam controlled by a time-varying electric circuit network as illustrated in Fig. 1e. The52

temporal interface is created by toggling the analog switch between ON and OFF states. When the switch is ON, R1 is set to 553

kΩ, corresponding to a bending stiffness of 0.63N ·m2. When the switch is OFF, R1 becomes effectively infinite (∞), resulting54

in a bending stiffness of 0.88N ·m2. In the experiment, a 3-cycle tone-burst signal with a central frequency of 6kHz is applied at55

the left interface (x/L = 0) between the host beam and the modulated metabeam. Flexural wave fields are measured throughout56

the system using a scanning laser Doppler vibrometer (Polytec PSV-400), as shown in Fig. 2a. At t1/t f = 0.44, the switch57

transitions from ON to OFF, creating a step-change boundary that causes a rapid shift in the bending stiffness of the modulated58

metabeam section. The switching time is 150 ns, ensuring an ideal temporal interface. Further details on the experimental setup59

can be found in the Methods and Supplementary Section 2. At the temporal interface, the incident wave splits into a temporally60

right-propagating refracted wave and a temporally left-propagating reflected wave. In this figure, only the temporal reflection is61

shown, with the left-propagating waves from incidence and spatial reflection at x/L = 1 removed (see details in Supplementary62

Section 3). We define the wavefront direction as the direction of wave propagation (see Fig. 2a,c). As such, the incident angle63
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(49◦ in the experiment and 47◦ in the simulation) differs from both the refracted angle (52◦ in the experiment and 50.5◦ in the64

simulation) and the reflected angle (52.5◦ in the experiment and 51◦ in the simulation), indicating a change in wave direction.65

The Fourier transform in Fig. 2b illustrates the frequency bandwidth of the input and output waves resulting from temporal66

reflection and refraction. It shows that the normalized frequency of the incident wave shifts from 1 to 1.16 for refraction and to67

1.13 for reflection, while the normalized wavenumbers remain constant. Numerical simulations are performed to validate our68

experimental observations, as shown in Figs. 2c and 2d. The results exhibit excellent agreement between the measured output69

frequencies after the temporal boundary and the numerical predictions, both in the time and frequency domains. To further70

verify the frequency conversion and wavenumber invariance, time-domain signals measured at x/L = 0.05 and x/L = 1 are71

shown in Fig. 2e, where three distinct wave packets corresponding to the incident, refracted, and reflected waves are clearly72

visible. The normalized frequency ft/ f0 = 1.15 for the refracted wave and fr/ f0 = 1.11 for the reflected wave quantitatively73

demonstrate the shift relative to the input frequency of the incident wave, as shown in Fig. 2f, indicating a breakdown of74

energy conservation. Additionally, the spatial-domain signals measured at t/t f = 1/3 and t/t f = 2/3 are shown in Fig. 2g. The75

wavenumbers kt for the refracted wave and kr for the reflected wave are consistent with the wavenumber k0 of the incident76

wave, as depicted in Fig. 2h, demonstrating the conservation of momentum. The corresponding numerical results for Fig. 2e-h77

are provided in Supplementary Section 4. Further results on wave refraction and reflection during the switch from OFF to ON78

at different frequencies are provided in Supplementary Sections 5 and 6. The effect of finite switching time on wave refraction79

and reflection is discussed in Supplementary Section 7. To rule out spatial reflection, we simulate an asymmetric pair of wave80

packets, resulting in a reversed order of the reflected waves (see Supplementary Section 8 for details).81

Refraction and reflection of the flexural wave at a temporal interface82

To understand frequency conversion through a temporal interface, we theoretically analyze flexural wave scattering at a temporal83

interface. In the absence of external forces, the behavior of flexural waves is governed by the Euler-Bernoulli beam equation84

with time-dependent bending stiffness, expressed as:85

∂

∂ t

(
ρA

∂w(x, t)
∂ t

)
+

∂ 2

∂x2

(
D(t)

∂ 2w(x, t)
∂x2

)
= 0, (1)

where D = EI represents the bending stiffness, E is Young’s modulus, and I is the second moment of area. Additionally, ρ86

denotes the density, and A represents the beam’s cross-sectional area. For temporal refraction and reflection, the bending87

stiffness is modulated as a step function over time: D(t) = D0 +(D1 −D0)Θ(t − t1), where Θ(t) is the Heaviside step function,88

D0 represents the initial bending stiffness, and D1 denotes the bending stiffness after an abrupt change at time t = t1. The89

conditions for temporal continuity, outlined in Supplementary Section 9, guarantee the smooth transition of both momentum90

and displacement at the temporal interface without external forces. These conditions are formulated as follows:91

ρA
∂w
∂ t

∣∣∣
t=t+1

= ρA
∂w
∂ t

∣∣∣
t=t−1

, w|t=t+1
= w|t=t−1

. (2)

Here, continuity conditions are applied to momentum and displacement fields, in analogy to the continuity of electric92

displacement D and magnetic flux density B in electrodynamics2. In our system, the absence of impulses ensures the continuity93

of momentum. Meanwhile, the invariance of density leads to the continuity of the velocity field, which, in turn, ensures the94

continuity of the displacement field.95

The bending stiffness in Eq. (1) is constant in time at all instances, except at the time interface. Therefore, the wave obeys96

the conventional expressions stemming from the separation of variables both before and after the time interface. For medium 197

(t < t1), the solution for the incident wave, based on Eq. (1), can be expressed as:98

w = Aieik0x−iω0t , t < t1, (3)

where Ai is the incident wave coefficient, and the angular frequency ω0 and wavenumber k0 before the switching event satisfy99

the dispersion relation ω0 =
√

D0/(ρA)k2
0. For medium 2 (t > t1), the displacement field, composed of the refracted and100

reflected waves after the switching event, can be expressed as:101

w =
[
Te−iω1(t−t1)+Reiω1(t−t1)

]
Aiei(k1x−ω0t1), t > t1, (4)

where T is the refraction coefficient, and R is the reflection coefficient. The angular frequency ω1 and wavenumber k1 after the102

switching event are related by the equation ω1 =
√

D1/(ρA)k2
1. By inserting the wave solutions from Eqs. (3) and (4) into the103

temporal continuity conditions given by Eq. (2), we obtain104

eik0x = (T +R)eik1x,

−iω0eik0x = (−iω1T + iω1R)eik1x.
(5)
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The temporal continuity conditions in Eq. (5) satisfied at every point in space requires105

k1 = k0, (6)

or equivalently106

ω1n1 = ω0n0, (7)

where the elastic index of refraction is defined as n j =
√

ρA/D j, with j = 0,1 representing the different media before and after107

the switching event. Eq. (7) can be interpreted as the temporal Snell’s law. Given the frequency of the incident wave and the108

refractive indices before and after the switching event, the frequency of the refracted wave can be predicted using Eq. (7). The109

more familiar form, which describes the geometric relationship between the angles of the incident and refracted waves in a110

space-time diagram, is given by111

tanα1

tanα0
=

n0

n1
, (8)

where α0 is the incident angle and α1 is the refracted angle. See Supplementary Section 10 for the detailed derivation.112

By substituting Eq. (6) and Eq. (7) into Eq. (5), we can obtain the temporal scattering coefficients as113

R =
1
2

(
1− Z0

Z1

)
, T =

1
2

(
1+

Z0

Z1

)
, (9)

where Z j =
√

ρAD j with j = 0,1 represents the elastic impedance. Eq. (9) serves as the analog of Fresnel equations114

at the temporal interface, predicting the amplitudes of the refracted and reflected waves. At the temporal interface, time-115

translation invariance is broken, leading to a breakdown of energy conservation according to Noether’s theorem (as detailed in116

Supplementary Section 11). However, the system preserves space-translation invariance, ensuring that momentum is conserved.117

This conserved momentum, also known as Noether’s charge, of the elastic beam is given by118

P =
∫

ρA
[
(∂tw)

†
∂xw+∂tw(∂xw)†

]
dx, (10)

where † denotes the Hermitian conjugate. The detailed derivation of Eq. (10) using the complex scalar field theory of the119

Euler-Bernoulli beam is provided in Supplementary Section 11. The momentum of the wave before the time switching is120

P0 = 2ρAω0k0A2
i , (11)

whereas the momentum of the waves after the switching time is121

P1 = 2ρAω1k0(T 2 −R2)A2
i . (12)

With the aid of Eq. (9), the conservation of momentum can be easily verified as122

P0 = P1 = 2Z0k3
0A2

i . (13)

In addition, the momentum of both the incident and scattered waves is proportional to k3
0, indicating that the wavenumber123

remains invariant.124

Guided by the derived Snell’s law in Eq. (7), the frequency conversion capability for different incident frequencies at the125

temporal interface is further tested experimentally. Fig. 3a presents the measured central frequencies of the refracted (crosses)126

and reflected (circles) waves at the temporal interface as a function of the incident frequency f0 (squares), for both the switch127

from ON to OFF (top panel) and OFF to ON (bottom panel). In the figure, the corresponding time-domain signals are measured128

at x/L = 0.05 for the incident and reflected waves, and at x/L = 1 for the refracted wave. The frequencies of the refracted and129

reflected waves shift upward (downward) during the transition from ON to OFF (OFF to ON), confirming the occurrence of130

frequency conversion. Furthermore, the frequencies of the refracted and reflected waves, normalized by the frequency of the131

incident wave, are presented in Fig. 3b. Additionally, Fig. 3c presents the tangents of the angles for the incident, refracted,132

and reflected waves, with the corresponding angles provided in Supplementary Table 3. The discrepancy observed for the133

switch from ON to OFF at 6 kHz arises because low-frequency incident signals do not terminate before reaching the temporal134

boundary, while the discrepancy at high frequencies is attributed to the limitations of the homogeneous beam model at short135

wavelengths. Overall, these normalized frequencies and tangent ratios agree with the theoretical predictions (n0/n1 = 1.17 in136

the top panel and n0/n1 = 0.85 in the bottom panel) derived from Snell’s law in Eq. (7) and Eq. (8). This agreement confirms137
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Figure 3. Verification of temporal Snell’s law, Fresnel equations, and momentum conservation. a The measured
frequencies of the incident (squares) and reflected (circles) signals at x/L = 0.05, and the refracted signal (crosses) observed at
x/L = 1, plotted against the incident frequency f0. The top (bottom) panel represents the results for the switch from ON to OFF
(from OFF to ON). b Normalized frequencies of the refracted and reflected waves, along with the theoretical prediction of
Snell’s law (dashed line). The top (bottom) panel represents the results for the switch from ON to OFF (from OFF to ON). c
The measured ratio of the tangent of the refraction angle (η1 = tanα1) to the tangent of the incidence angle (η0 = tanα0),
along with the measured ratio of the tangent of the reflection angle (η ′

1 = tanα ′
1) to the tangent of the incidence angle, is

compared with the theoretical prediction based on Snell’s law (represented by the dashed line). The top (bottom) panel
represents the results for the switch from ON to OFF (from OFF to ON). d The measured and theoretical magnitudes of the
refraction coefficient (top panel) and reflection coefficient (bottom panel) at t/t f = 2/3 for the switch from ON to OFF, plotted
against the incident frequency f0. e The measured and theoretical magnitudes of the refraction coefficient (top panel) and
reflection coefficient (bottom panel) at t/t f = 2/3 for the switch from OFF to ON, plotted against the incident frequency f0. f
The ratio of momentum before and after the temporal interface, along with the theoretical prediction based on momentum
conservation (shown as the dashed line). The top panel shows the results for the switch from ON to OFF, while the bottom
panel corresponds to the switch from OFF to ON.
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that the observed frequency conversion and directional changes are consistent with the analytical predictions based on the138

temporal analog of Snell’s law.139

The derived Fresnel equations in Eq. (9) across the temporal boundary are also verified. The amplitudes of the incident,140

refracted, and reflected waves are defined as the height of spectral peaks, as shown in Fig. 2h. The corresponding spatial-domain141

signals are measured at t/t f = 1/3 for the incident wave, and at t/t f = 2/3 for the refracted and reflected waves. Figs. 3d,e142

show the measured amplitudes of the refraction coefficient (T , crosses), reflection coefficient (R, circles), and their theoretical143

predictions (dashed lines) based on Eq. (9), as functions of the incident frequency for the switches from ON to OFF and144

OFF to ON, respectively. In Fig. 3d, the measured amplitudes closely match the theoretical predictions of |T |= 0.925 and145

|R| = 0.075 for the switch from ON to OFF at the given incident frequencies. Similarly, the minor deviation between the146

experimental measurement and theoretical predictions may be attributed to the missing of the low-frequency incident signals147

and the limitations of the homogeneous beam model. Also as shown in Fig. 3e, the measured amplitudes are mainly consistent148

with the theoretical predictions of |T |= 1.09 and |R|= 0.089 for switching OFF to ON at different incident frequencies. A149

small deviation is also observed. However, the reasonable consistency verifies the elastic analog of Fresnel equations across150

various incident frequencies. Finally, the ratio of momentum before and after the temporal interface is presented in Fig. 3f.151

The momentum ratios are mainly close to 1 for both the switch from ON to OFF and from OFF to ON, validating momentum152

conservation.153

Flexural wave engineering with temporal multi-stepped interfaces154

Leveraging scattering phenomena at a single temporal interface, we explore the engineering of flexural wave interferences in155

time, inspired by their photonic counterparts, such as in discrete temporal crystals and temporal metabeams analogous to the156

optical counterpart23, 57, 58. To demonstrate this, we consider flexural wave propagation through a temporal modulation of the157

bending stiffness characterized by M+1 stepped temporal interfaces, as depicted in Fig. 4a. The unbounded medium initially158

has a refractive index n0 for times t < t1. At t = t1, a temporal modulation of the refractive index occurs, characterized by159

nm, m = 1,2, ...,M over M intervals. This assumption of step temporal transitions is highly idealized, as it implies an infinitely160

fast response of the medium to the modulation. The theory of wave propagation through multi-stepped temporal interfaces in161

an unbounded medium is developed using the rigorous transfer matrix approach. The wave components on the left and right162

sides of the mth temporal slab are represented by [w+
m ,w

−
m ]

T and [w̃+
m , w̃

−
m ]

T, respectively. These components are connected by163

the following expression:164 [
w̃+

m
w̃−

m

]
= Nm

a

[
w+

m
w−

m

]
, (14)

where the propagation matrix Nm
a is165

Nm
a =

[
e−iωm∆tm 0

0 eiωm∆tm

]
, (15)

and the mth time interval is ∆tm = tm+1 − tm. In addition, due to the continuity equations in Eq. (2), the wave components166

[w+
m ,w

−
m ]

T and [w̃+
m−1, w̃

−
m−1]

T on either side of mth temporal interface satisfy the following relation:167 [
w+

m
w−

m

]
= Nm

b

[
w̃+

m−1
w̃−

m−1

]
. (16)

Here, the matching matrix Nm
b is168

Nm
b =

[
Tm Rm
Rm Tm

]
. (17)

where Tm = 1+Zm−1/Zm and Rm = 1−Zm−1/Zm. Applying Eqs. (14) and (16) recurrently, we obtain the relationship between169

the waves in the initial and final temporal boundaries:170 [
w+

M+1
w−

M+1

]
= N

[
w+

0
0

]
, (18)

where the overall transfer matrix N is given as follows:171

N(n, t, f0) = NM+1
b

M

∏
m=1

Nm
a Nm

b . (19)
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Figure 4. Multi-stepped temporal interfaces for anti-reflection. a Schematic diagram illustrating a wave propagating
through multi-stepped temporal interfaces. The setup consists of two temporally semi-infinite media with a cascade of M
temporal slabs, separated by M+1 temporal interfaces. b, e The optimal time-dependent index of refraction function designed
for anti-reflection of a single frequency (b) and broadband frequency (e). c, f Wave packet evolution by COMSOL simulation
for verifying anti-reflection of a single frequency (c) and broadband frequency (f). The wave packet, with a central frequency of
6 kHz, consists of 5 cycles in time, with t f = 6 ms and L = 2.56 m. d, g Refraction and reflection coefficients as a function of
the normalized incident frequency f/ f0 for single frequency (d) and broadband frequency (g) anti-elimination, where f0 = 6
kHz, with circles representing numerical simulation results and solid lines representing analytical calculations using the transfer
matrix method. The subscripts "s" and "a" denote simulated and analytical results, respectively. The results are obtained from
the Fourier transform at t/t f = 0.75 in (c) and (f).
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Figure 5. Multi-stepped temporal interfaces for wave amplification. a The optimal distribution of index of refraction with
4 temporal interfaces for wave amplification. b The evolution of the wave packet is simulated using COMSOL to verify wave
amplification. This wave packet, with a central frequency of 6 kHz, consists of 5 cycles for t f = 6 ms and spans a length of
L = 2.56 m. c Refraction and reflection coefficients as a function of the normalized incident frequency f/ f0, where f0 = 6 kHz,
with circles representing numerical simulation results and solid lines representing analytical calculations using the transfer
matrix method. The subscripts "s" and "a" denote simulated and analytical results, respectively. The results are obtained from
the Fourier transform of data at t/t f = 0.75 in (b)

Here, n and t are vectors representing the refractive indices nm (for m = 1,2, . . . ,M) and the times at different interfaces tm (for172

m = 1,2, . . . ,M+1), respectively. f0 denotes the wave frequency in the left unbounded medium. Additionally, the refraction173

coefficient is defined as T (n, t, f0) = w+
M+1/w+

0 = N11, and the reflection coefficient is defined as R(n, t, f0) = w−
M+1/w+

0 = N21.174

Using the analytical solutions for the reflection and refraction coefficients, we will explore three examples of engineered175

flexural wave propagation across multi-stepped temporal interfaces through inverse design. These examples will leverage176

temporal intervals and modulated slab parameters, demonstrating the potential of temporal multi-stepped interfaces as versatile177

wave transformers. First, we investigate anti-reflection temporal coatings by introducing two-stepped temporal slabs with178

equal travel times to achieve impedance matching and frequency conversion between two connected waveguides with different179

stiffnesses, analogous to quarter-wavelength impedance matching in the spatial domain59. Second, we employ multi-stepped180

temporal interfaces composed of five temporal slabs to achieve broadband wave anti-reflection57. Finally, we propose temporal181

multi-stepped interfaces with alternating high and low refractive indices to enable wave amplification in both reflection and182

refraction58. The temporal parameters of these multi-stepped structures are determined using an optimization method, which183

seeks to identify the optimal temporal interface parameters by minimizing a target function related to the reflection and184

refraction coefficients, subject to specified constraints. Detailed formulations of the optimization problem for the three cases185

are provided in Supplementary Section 12, and the optimized results will be validated against the analytical solution from Eq.186

(19) for multi-stepped interfaces using the optimized parameters.187

Fig. 4b presents the numerically derived two-stepped temporal configuration, consisting of a single temporal slab with188

a refractive index n1, designed to eliminate the reflection of an incident flexural wave at a frequency of f0 = 6 kHz, closely189

matching our experimental testing conditions. The duration of the temporal slab is defined as ∆t1 = t2 − t1. The wave initially190

propagates through a medium with a refractive index of n0, while the final medium has a refractive index of n2 = 2n0. By191

minimizing the square of the reflection coefficient magnitude at the frequency (see Supplementary Section 12 for details), we192

obtain the optimal values of n1 = 1.414n0 and ∆t1 = 0.3536/ f0. These results are in excellent agreement with the analytical193

solution in Eq. (18), where n1 =
√

2n0 and t2 = 1/(2
√

2 f0) (see Methods)23. Since the time duration t2 equals a quarter of the194

wave period in the slab, this temporal medium is referred to as a quarter-wave transformer. Physically, as the incident wave195

passes through two temporal interfaces, it generates two refracted and two reflected waves. In the quarter-wave transformer,196

the two reflected waves cancel each other through coherent subtraction. Using the optimized parameters, Fig. 4c illustrates197

the evolution of a wave packet with a central frequency of f0 = 6 kHz as it propagates through the temporal quarter-wave198

transformer. The simulation is performed in a long temporal metabeam with 240 unit cells (see Supplementary Section 4199

for details on refraction and reflection without the temporal slab). In Fig. 4c, the reflected wave packet is almost entirely200

suppressed, though two small wave packets with different frequencies are generated. This occurs because the transformer201

perfectly eliminates reflection at the frequency, while residual components remain at other frequencies23. Additional simulations202

were performed for wave packets with different central frequencies, and the corresponding refraction coefficient Ts and reflection203
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Figure 6. Smart waveform morphing schematic enabled by a smooth time-varying metabeam. a Schematic illustration
of smart waveform morphing enabled by a time-varying metabeam. b, e The transfer function can be modulated into various
forms, such as a sinusoidal function (b) and smooth step function (e). c, f The corresponding effective bending stiffness over
time at frequencies of 33 kHz of sinusoidal function and smooth step function, respectively. d, g The simulated response
(encapsulated by an orange envelope) and the measured time response (purple lines) at a point on the right side of the beam of
the sinusoidal function and smooth step function, respectively. The excitation source, with a frequency of 33 kHz, is located at
the leftmost piezoelectric patch.

coefficient Rs are plotted in Fig. 4d. In this figure, the numerical refraction coefficient Ts and reflection coefficient Rs (circles)204

closely match the analytical refraction coefficient Ta and reflection coefficient Ra (solid lines), calculated using the transfer205

matrix method. The reflection coefficient approaches zero near 0.5 f0 but diverges significantly at other frequencies, confirming206

that the temporal quarter-wave transformer eliminates reflection optimally and shifts the frequency component to the frequency207

0.5 f0. The magnitude of the frequency shift is determined by the refractive index change through the temporal interfaces. It is208

also observed that the values of scattering coefficient Ts are greater than unity for most frequencies, revealing a gain effect209

induced on the propagating signal by the medium, where energy conservation is violated.210

To achieve broadband wave anti-reflection, the multi-stepped interfaces are determined using an optimization method.211

Fig. 4e shows the resulting temporal medium with four slabs, characterized by n = [1.075,1.271,1.573,1.860]n0 and t =212

[0,0.262,0.575,0.962,1.416]/ f0, designed for broadband anti-reflection across the frequency range from 0.5 f0 to 1.5 f0. The213

initial and final refractive indices are n0 and n2 = 2n0, respectively. These parameters are derived by minimizing the integral214

of the squared reflection coefficient over the same frequency range (see Supplementary Section 12 for details). The wave215

packet evolution in this medium is shown in Fig. 4f, where reflections are significantly suppressed, except for minor low-216

and high-frequency noise. Fig. 4g shows the simulated and analytical refraction and reflection coefficients in the frequency217

domain, with the simulated reflection coefficient staying near zero across the range from 0.25 f0 to 0.75 f0, where the frequency218

shifts relative to the incident frequency. This result is consistent with the analytical results from the transfer matrix method,219

confirming the accuracy of the optimization method and the effectiveness of temporal multi-stepped interfaces for broadband220

anti-reflection.221

Different from spatial interfaces, time interfaces can provide energy to the input waves, hence through interference it is222

possible to design time scattering profiles that achieve broadband wave amplification in both reflected and refracted waves. Fig.223
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Figure 7. Time-varying metabeam for morse coding. a Fundamental elements of Morse coding—dash, space, and dot—are
created using flexural waves of varying amplitudes. b The transfer function corresponds to the Morse code representation of the
text "MU". c The measured signal (purple lines) is encapsulated by the simulated signal (orange lines), encoding the text "MU".

5a presents optimal parameters to achieve this task for a temporal multilayer with three slabs, where n = [3,1,3]n0 represents224

the refractive indices and t = [0,0.75,0.25,0.75]/ f0 represents the corresponding time intervals. The initial refractive index is225

denoted by n0. These parameters are obtained by minimizing the negative square of the magnitude of the refraction coefficient226

at 6 kHz (see Supplementary Section 12 for details). The length of each slab is a quarter of the wave period, resulting in a phase227

decrease of π/4 for the refracted wave and a phase increase of π/4 for the reflected wave. After passing through each slab, the228

phase difference between the refracted and reflected waves reaches π , leading to constructive interference at the subsequent229

temporal interface, which amplifies the waves29. The wave packet evolution in this medium is shown in Fig. 5b, where230

significant amplification of both refraction and reflection is observed. Fig. 5c shows that the simulated reflection coefficient231

peaks at approximately 4.5 around the frequency f0, closely matching the analytical results from the transfer matrix method.232

Although the refraction coefficient is optimized for a specific frequency, amplification is observed over a broad frequency range,233

spanning from 0.6 f0 to 1.4 f0.234

Temporal metabeams for smart waveform morphing and information coding235

In this section, we propose a method for designing temporal metabeams with tunable time-varying bending stiffness by utilizing236

self-reconfigurable transfer functions controlled by time-varying digital potentiometers. By programming the time-domain237

behavior of these digital potentiometers, the metabeam’s bending stiffness can be modulated to follow desired periodic or238

aperiodic patterns. The proposed time-varying metabeam demonstrates capabilities in shaping the amplitudes of transmitted239

flexural waves in the time domain, both experimentally and numerically, as illustrated in Fig. 6a. It is essential to emphasize240

that the time-varying parameters must meet adiabatic conditions, meaning the bending stiffness should change gradually enough241

to avoid inducing frequency conversion at the temporal stepped interface.242

Under the assumption of the length of the unit cell being much shorter than the wavelength, the effective bending stiffness243

of the metabeams could be positive and negative. Previous studies employed metabeams with time-varying negative bending244

stiffness to modulate the amplitude of flexural waves within the subwavelength Bragg bandgap56, 60. For the metabeam with the245

negative stiffness, the flexural wave will exponentially decay in factor proportional to the magnitude of the effective bending246
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stiffness (see Supplementary Section 1). Therefore, the negative stiffness of the metabeam with temporal variability spanning a247

reasonable range could result in a significant change in wave transmission. The time-varying bending stiffnesses are difficult to248

measure directly, hence we indirectly verify the existence by studying the wave transmission properties of the metabeam. To249

understand the underlying mechanism of this method, we analyze the influences of the constitutive parameters on the wave250

transmission of a metabeam with 30 unit cells.251

A time-varying transfer function is applied to the metabeam to achieve the desired waveform morphing. For instance,252

the transfer function can be modulated as a sinusoidal or smooth step function using a time-varying digital potentiometer, as253

shown in Fig. 6b and 6e. For an excitation frequency of 33 kHz, the corresponding effective bending stiffness over time is254

plotted in Fig. 6c and 6f. The detailed smooth functions can be found in Supplementary Section 13. The results in Fig. 6c255

and 6f show that the modulation pattern of the bending stiffness can be flexibly tuned to any desired shape by programming256

the transfer functions. Next, we demonstrate that modulating the constitutive parameters can be used for waveform morphing.257

Using sinusoidal and smooth step function patterns as examples, we measure the transmitted waves for different modulation258

amplitudes, as shown in Fig. 6d and 6g. As shown in Fig. 6d and 6g, the variations in bending stiffness are clearly reflected in259

the changing amplitudes of the transmitted wave, demonstrating that the metabeam can modulate the amplitude of transmitted260

signals in a desired periodic manner. The experimental and simulated transmitted wave amplitudes are in excellent agreement,261

following the patterns predicted by the homogenized model. This confirms that the adiabatic assumption is satisfied, allowing262

the metabeam to be treated as a temporal Cauchy-elastic medium with strongly time-modulated constitutive parameters.263

As an additional example, we utilize the metabeam as an elastic Morse coder to demonstrate its capability to modulate wave264

amplitudes in an aperiodic manner. Morse codes represent letters of the alphabet, numerals, and punctuation marks by arranging265

dots, dashes, and spaces, as depicted in Fig. 7a. Traditionally, the codes are transmitted as electric pulse, mechanical or visual266

signals. Here, we program the codes with time-varying bending stiffness of the metabeam. These codes are distinguished by267

the amplitudes of the transmitted waves when the metabeam is excited on the left side by a constant sine signal at 33 kHz.268

Specifically, a "dash" is represented by the measured transmitted wave with the largest amplitude among the three states and it269

is normalized to unit 1, as shown in Fig. 7a; a dot is represented by the normalized amplitude of the transmitted wave being270

0.75; a space between letters is represented by the amplitude of the transmitted wave being 0.45. In addition, each state is271

designed to last 0.1 seconds in the time domain.272

Using the coding rules, we encode "MU", the abbreviation for the University of Missouri, into the metabeam via a273

time-varying transfer function. The time-varying digital potentiometer corresponding to this transfer function is shown in Fig.274

7b. The encoded information can be extracted by mechanically stimulating the left side of the metabeam with a constant 33275

kHz sine signal and measuring the transmitted wave on the right side. The measured signal, shown in Fig. 7c, successfully276

transmits the letters "MU". The measured signals are in excellent agreement with our numerical simulations.277

Discussion278

This study presents the experimental observation of temporal refraction and reflection of flexural waves in a time-varying279

metabeam with time-modulated bending stiffness. We also demonstrated stepped and smooth variations of multiple time280

interfaces for enhanced wave control based on time scattering. Our metabeam, composed of an elastic beam with attached281

piezoelectric patches, is a mechanical platform well verse to explore a wide range of time-varying media in ultrafast wave282

control and advanced signal processing technologies through time-varying transfer functions. The temporal variation patterns283

can be of periodic or non-periodic form, allowing for fast and flexible adjustment, and can even be controlled wirelessly.284

We have established analogues to Snell’s law and Fresnel equations for elastic waves, providing a theoretical framework for285

understanding wave scattering at temporal boundaries, which was validated through experimental testing. Due to spatial286

translational symmetry, we show that momentum remains conserved, revealing the fundamental principles governing wave287

scattering in time-varying media. The rapid modulation of stiffness via elastic elements is scalable and it can be applied to more288

complex designs, including damping compensation. A smooth time-varying metabeam was then implemented in waveguides,289

achieving anti-reflection temporal coatings, wave morphing, impedance matching, and efficient frequency conversion. Beyond290

these remarkable functionalities, the metabeam may serve as a platform to study phenomena like temporal pumping and k-space291

bandgaps, inspiring the development of novel wave-based devices for signal processing.292

Moving forward, this work opens exciting opportunities, in particular in the context of combining spatial and temporal293

interfaces for 4D elastic metamaterials1. Opportunities to realize elastic time crystals and quasi-crystals emerge in this platform,294

enabling the time analogues of sophisticated spatial wave features such as Hofstadter’s butterfly and topological modes.295

Time-varying elastodynamic media undoubtedly open new and exciting research avenues for wave control and manipulation,296

offering novel degrees of freedom for steering and controlling phases of matter. The elastic wave platform introduced here297

offers interesting opportunities to explore these phenomena experimentally.298
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Methods299

Sample fabrication. The metabeam is composed of 30 piezoelectric patches (APC 850: 10 mm × 10 mm × 0.8 mm) mounted300

via conductive epoxy onto the middle of an aluminum host beam (180 mm × 10 mm × 2 mm). In the circuit, the resistors301

R0 = 1 MΩ and R2 = 10 kΩ with 5% error, the capacitors are film capacitors with 5% error, the microcontroller is an STM32302

Nucleo Development Board with an STM32F446RE MCU, the digital potentiometer R1 is a 20 kΩ AD5291 from Analog303

Devices, and the analog switch is a DG411 from Vishay Siliconix.304

Experimental procedures. In experiments, 30 piezoelectric patches are connected with control circuits, and another piezo-305

electric patch on their left is used to generate incident flexural waves. We employ 3 cycles of tone-burst signals with central306

frequencies at 6 kHz, 8 kHz, and 10 kHz for temporal refraction and reflection. We generate and amplify incident wave signals307

via an arbitrary waveform generator (Tektronix AFG3022C) and a high-voltage amplifier (Krohn-Hite), respectively. Transverse308

velocity wavefields are measured on the surface of the metamaterial by a scanning laser Doppler vibrometer (Polytec PSV-400).309

The analog switch is controlled by the microcontroller to turn off 0.3 ms after the reference signal, generated by the arbitrary310

waveform generator with an amplitude of 3 V, drops below −2 V. For smart waveform morphing, the excitation is applied311

using a sinusoidal signal with a frequency of 33 kHz, and the velocity signal is measured at a position 0.2 m to the right of the312

rightmost piezoelectric patches.313

Finite element simulations. The numerical simulations are conducted by using a 2D "Piezoelectricity, Solid" module in the314

commercial finite element software COMSOL Multiphysics. The material of the host beam is implemented by Aluminum315

[solid] and of piezoelectric patches are PZT-5A from COMSOL Material Library. The current passing through the top surface316

of the piezoelectric patch is coupled with voltage on the top surface by a transfer function using "Global ODEs and DAEs"317

module for simulating the circuit effect. The dispersion curves in Fig. 2h are obtained by using eigenfrequency analysis with318

Floquet boundary conditions. The time domain analysis is conducted for the same setup as the experiment, where the transfer319

function is defined as a time-varying function. The boundary conditions on both sides for temporal refraction and reflection320

are free boundaries. However, two gradient damping beams are attached on both sides to create perfect absorption boundary321

conditions for smart waveform morphing.322

Temporal quarter-wave transformer The temporal quarter-wave transformer comprises a slab with refractive index n1323

surrounded by two semi-infinite media with refractive indices n0 and n2, respectively. Therefore, the transfer matrix consists of324

two matching matrices and one propagation matrix combined as325

N =

[
T2 R2
R2 T2

][
e−iω1∆t1 0

0 eiω1∆t1

][
T1 R1
R1 T1

]
. (20)

Eq. (20) gives the reflection coefficient:326

R = N21 = R1T2eiω1∆t1 +R2T1e−iω1∆t1 . (21)

The reflection coefficient can be canceled out through coherent subtraction, which implies327

R1T2eiω1∆t1 +R2T1e−iω1∆t1 = 0. (22)

This complex equation can be decomposed into two real equations corresponding to the amplitude and the phase:328

ω1∆t1 =
(2n+1)π

2
,

R2T1 = T2R1.
(23)

These two equations give the anti-reflection conditions:329

∆t1 =
(2p+1)

4 f1
,

n1 =
√

n0n2,

(24)

where p is an integer, and f1 is the wave frequency in the middle slab with refractive index n1. If p = 0, the slab length ∆t1330

equals a quarter of the wave period, making this temporal medium a quarter-wave transformer. In the main text, with n2 = 2n0,331

we have n1 =
√

2n0, f1 =
√

2 f0/2, and t2 = 1/(2
√

2 f0) for p = 0 and t1 = 0.332
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FIG. S1. The effective bending stiffness and its application. a Setup for determining the effective stiffness in the
numerical test. b The relationship between normalized effective stiffness and R1. D0 represents the bending stiffness for the
open circuit. c The dispersion curves for different values of R1. The purple region indicates the bandgap for R1 = 5.2 kΩ, while
the orange region indicates the bandgap for R1 = 5.4 kΩ. d The normalized stiffness as a function of frequency. The purple
region shows the negative stiffness area for R1 = 5.2 kΩ, and the orange region shows the negative stiffness area for R1 = 5.4
kΩ.

1. DETERMINE THE EFFECTIVE BENDING STIFFNESS FROM NUMERICAL TESTS

A schematic diagram of the numerical test is shown in Fig. S1a. To determine the effective bending stiffness,
the rotational angles at the left and right boundaries of the metabeam unit cell are set to −θ and θ, respectively,
using rigid connectors in COMSOL. The vertical displacements at both boundaries are constrained to zero, while
the horizontal displacements are left free. The reaction bending moment M at each rigid connector is obtained for
calculating the effective bending stiffness. By solving the problem in the frequency domain, the effective bending
stiffness D of the metabeam is defined following the approach described by Chen [1]:

D =
M

2θ/L
, (S1)

where L is the length of the unit cell. The normalized effective bending stiffness as a function of the resistor R1 is
shown in Fig. S1b. For R1 values smaller than 5.5 kΩ, the normalized stiffness decreases to zero as R1 increases,
demonstrating the potential for tuning the bending stiffness using the negative capacitance circuit. For temporal
refraction and reflection, R1 = 5 kΩ, resulting in a normalized stiffness of D/D0 = 0.72 at the operating frequency
of 6 kHz, where D0 = 0.88N · m2. In general, the bending stiffness is frequency-dependent, and negative bending
stiffness indicates the presence of bandgaps. As shown in Fig. S1c,d, the range of bandgaps corresponds to the range
of negative normalized effective stiffness for different R1 values. Additionally, the average density of the metabeam is
4143 kg/m3, and ρA = 0.116 kg/m.

2. EXPERIMENTAL DETAILS

A. Geometric and material parameters of the metabeam

The metabeam consists of 30 unit cells, each equipped with a piezoelectric patch connected to a negative capacitance
circuit via an analog switch, along with an additional unit cell used for excitation, as illustrated in Fig. S2a. The 30
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TABLE S1. Geometric and material parameters of the metabeam.

Parameter Description Value

hb Thickness of the host beam 2 mm

wb Width of the host beam 1 cm

Lp Length of the piezoelectric patches 1 cm

hp Thickness of the piezoelectric patches 0.8 mm

wp Width of the piezoelectric patches 1 cm

∆L Interval between two piezoelectric patches 0.67 mm

Eb Young’s modulus of the aluminum beam 70 GPa

ρb Density of the aluminum beam 2700 kg/m3

sE11 Compliance matrix of the piezoelectric patches 1.64× 10−11 1/Pa

sE33 Compliance matrix of the piezoelectric patches 1.88× 10−11 1/Pa

sE44 Compliance matrix of the piezoelectric patches 4.75× 10−11 1/Pa

sE66 Compliance matrix of the piezoelectric patches 4.43× 10−11 1/Pa

sE12 Compliance matrix of the piezoelectric patches −5.74× 10−12 1/Pa

sE13 Compliance matrix of the piezoelectric patches −7.22× 10−12 1/Pa

d33 Coupling matrix of the piezoelectric patches 3.74× 10−11 C/N

d31 Coupling matrix of the piezoelectric patches −1.71× 10−11 C/N

d15 Coupling matrix of the piezoelectric patches 5.84× 10−11 C/N

ϵS33 Coupling matrix of the piezoelectric patches 919.1ϵ0

ϵS11 Coupling matrix of the piezoelectric patches 826.6ϵ0

ϵ0 Vacuum permittivity 8.842× 10−12 F/m

ρp Density of the piezoelectric patches 7750 kg/m3

TABLE S2. List of components used to fabricate metabeam, referred to the schematic shown in Fig. S2.

Component Description Value

C0 NC circuit capacitor 1 nF

R0 NC circuit resistor 1 MΩ

R1 NC circuit resistor 5 kΩ

R2 NC circuit resistor 10 kΩ

Analog switch DG411

Operational
amplifier

OPA445

MCU STM32F446

TABLE S3. The angles of the incident wave, refracted wave, and reflected wave.

Cases α0 α1 α′
1

ON-to-OFF at 6 kHz 49.0◦ 52.0◦ 52.5◦

ON-to-OFF at 6 kHz 48.0◦ 43.0◦ 43.5◦

ON-to-OFF at 8 kHz 40.5◦ 43.5◦ 43.5◦

OFF-to-ON at 8 kHz 45.0◦ 40.0◦ 40.0◦

ON-to-OFF at 10 kHz 42.0◦ 45.5◦ 45.0◦

OFF-to-ON at 10 kHz 42.0◦ 39.0◦ 39.5◦
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FIG. S2. Practical experiment layout and measurement setup. a Simplified schematic of the experimental setup. A
signal generated by a function generator is amplified by a power amplifier to produce elastic waves through a piezoelectric
patch. This signal also triggers an MCU to control all analog switches and activates the scanning laser Doppler vibrometer
(SLDV) to measure the transverse velocity of the metabeam’s surface. b Electrical control circuit layout and schematic for a
single unit cell, along with its geometric parameters. c MCU pinout view.

piezoelectric patches are bonded to the aluminum beam using conductive epoxy, which is cured at room temperature
for 24 hours. The spacing between adjacent piezoelectric patches is 0.67 mm. The geometric and material parameters
of the metabeam, shown in Fig. S2b, are summarized in Table S1.

B. Experiment layout and measurement setup

An electric signal generated by a function generator (Tektronix AFG3022C) is amplified by a power amplifier
(Krohn-Hite) to excite elastic waves via the piezoelectric patch at rightmost. This signal simultaneously triggers
a microcontroller unit (STM32F446RE) to control the analog switches and activates the scanning laser Doppler
vibrometer (Polytec PSV-400) to measure the transverse velocity on the surface of the metabeam, as illustrated in
Fig. S2a. A photograph of the experimental setup, showing the metabeam and its circuits, is presented in Fig. S3.

The laser Doppler vibrometer records data for 25.6 ms at a sampling rate of fs = 1.28 MHz. The scanned domain,
spanning 1.38 m, is discretized into a grid of 219 evenly spaced points, achieving a spatial resolution of 0.0063 m.
Fig. S2b provides a schematic of the electrical control system used in each unit cell. The connection status between
the piezoelectric patches and the negative capacitance circuits is controlled by analog switches, allowing adjustment
of the effective stiffness of the metabeam. When Vcontrol is at a high voltage level, the switch is OFF, and it is ON at
a low voltage level. The switching time is less than 150 ns for transitions from OFF to ON and less than 100 ns for
transitions from ON to OFF. These times are approximately 1000 times shorter than the bending wave period (about
150 µs), creating an ideal temporal interface.

All electrical circuits are constructed on solderless breadboards. The pinout of the MCU is shown in Fig. S2c. The
MCU receives the reference signal through the analog-to-digital converter (ADC) at a sampling rate of 2 MHz. Once
the voltage of the reference signal exceeds a specified threshold (−2 V), the MCU changes the state of the analog
switch after a precisely programmed delay. The circuit parameters and components are detailed in Table S2.
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FIG. S3. A photograph of metabeam with circuits.

FIG. S4. Spacetime diagram of temporal refraction and reflection without masks. a, b The top panels show the
simulation (a) and experimental results (b) of wave scattering from an incident wave packet consisting of 3 cycles in the time
domain, with parameters tf = 1.1ms and t1 = 0.44ms, at a time interface in a spacetime diagram. The bottom panels depict
the system configuration, consisting of a length L = 0.32m, composed of two aluminum beams (Al) and a piezo-metabeam
(Piezo). The excitation source (indicated by the lightning symbol) is positioned at the left interface. c, d The spacetime
diagrams illustrate the wave evolution with the switch permanently OFF (c) and permanently ON (d).

3. VERIFICATION OF TEMPORAL REFLECTION IN THE EXPERIMENT

In Fig. 2a,c of the main text, masks were added to highlight the temporally reflected wave. Here, the masks are
removed, and the original figures are presented in Fig. S4a,b. Since the behavior of spatially reflected waves, caused
by spatial inhomogeneity, closely resembles that of temporally reflected waves, it is crucial to verify that the reflected
waves in Fig. S4a,b are indeed temporally reflected waves rather than spatially reflected waves.

First, we perform a numerical simulation using the same setup as the experiment. The wave evolution in the
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FIG. S5. Temporal refraction and reflection at different switching times. a, b, and c show the spacetime diagrams of
wave evolution for switching times t1 = 0.435 ms, t1 = 0.44 ms, and t1 = 0.445 ms, respectively.

spacetime diagram from the simulation is shown in Fig. S4a. Since the excitation is applied at the left interface
between the aluminum beam and the piezoelectric metabeam, both a left-propagating wave and a right-propagating
wave are generated. When the right-propagating wave reaches the right interface between the piezoelectric metabeam
and the aluminum beam, a reflected wave is produced due to the spatial interface. In the simulation, an additional
reflected wave is generated at the time interface, which is distinct from both the left-propagating wave caused by the
excitation and the spatially reflected wave. This temporally reflected wave, also observed in the experiment (see Fig.
S4b), closely resembles the one in the simulation, suggesting that it is indeed the time-reflected wave.

In the experiment, the piezoelectric metabeam consists of 30 unit cells, making it challenging to achieve perfect
homogeneity across all cells. This inhomogeneity can potentially induce spatially reflected waves within the metabeam.
To rule out this possibility, the spacetime diagrams of wave evolution with the switch permanently OFF and ON are
presented in Fig. S4c,d for comparison. In these figures, no spatially reflected waves are observed in the middle of the
metabeam, indicating that the metabeam is homogeneous. The homogeneity of the metabeam is ensured through the
following steps. When the switch is OFF, homogeneity is maintained by carefully attaching the piezoelectric patches
at constant intervals. When the switch is ON, resistors with R1 = 5 kΩ are initially used, and the spacetime diagram
is measured. While the metabeam is generally homogeneous, a few unit cells exhibit stiffness variations, leading to
spatially reflected waves visible in the diagram. These abnormal cells are identified, and their resistors are replaced
with potentiometers. By tuning the potentiometers until the reflected signals disappear from the PSV-400 screen,
uniformity is achieved.

Furthermore, a key characteristic of a temporally reflected wave is that its position depends on the timing of the
time interface. To verify this, we conduct three experimental tests with switching times of t1 = 0.435 ms, 0.44 ms,
and 0.445 ms, as shown in Fig. S5. In these figures, the position of the reflected wave shifts with changes in the time
interface, confirming that the reflected wave depends on the time interface. This observation indicates that it is a
temporally reflected wave rather than a spatially reflected one.

Based on these observations, we conclude that the reflected wave is a temporally reflected wave rather than a
spatially reflected wave.

4. NUMERICAL SIMULATION OF TEMPORAL REFRACTION AND REFLECTION

A. Numerical simulation of temporal refraction and reflection in a metabeam

In Fig. 2 of the main text, only the experimental results are presented. Here, the corresponding simulation results
are shown in Fig. S6 for comparison. The simulation results in Fig. S6 closely align with the experimental results in
Fig. 3 of the main text. The frequency of the refracted and reflected waves is approximately 1.13 f0, which is close
to the theoretical value of 1.17 f0. Furthermore, the normalized amplitude of the reflected wave with respect to the
wave number is flatter and closely matches the theoretical prediction, indicating that the amplitude relation predicted
in Eq. (9) of the main text holds over a wide frequency range.
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FIG. S6. Spectral analysis of wave refraction and reflection at a time interface based on numerical simulation
data. a The incident (purple) and reflected (blue) signals measured at x = 0.05L. b The refracted signal (orange) observed
at x = L. c Spectral analysis of the time-domain signals from (a, b). d The incident spatial profile (purple) measured at
t = 1/3tf , and the reflected and transmitted spatial profiles (blue and orange, respectively) measured at t = 2/3tf . e Spectral
analysis of the spatial-domain signals from (d). f The normalized spectral data for the incident, reflected, and refracted waves
from (e), with each normalized by the amplitude distribution of the incident wave.

B. Numerical simulation of temporal refraction and reflection in a long metabeam

In the experiment, the metabeam’s normalized stiffness can be reduced to a minimum of 0.72, resulting in a
relatively small reflected wave. To better observe temporal refraction and reflection, we perform a simulation using
a long metabeam with 240 unit cells, excited by a 5-cycle tone burst. In the simulation, the switch transitions from
OFF to ON, with the bending stiffness in the ON state being one-quarter of that in the OFF state. Under these
conditions, the refractive index ratio is n1/n0 = 2, and the impedance ratio is Z1/Z0 = 1/2.

In Fig. S7a, the incident wave splits into a refracted wave and a reflected wave upon encountering the time interface.
A 2D Fourier transform is applied to the data in Fig. S7a, with the results shown in Fig. S7b. In Fig. S7b, the
frequency of the incident wave shifts from f0 to f0/2 and −f0/2, while the wavenumber remains constant. In Fig. S7c,
the directions of the incident, refracted, and reflected plane waves (solid arrows) and wave packets (dashed arrows)
are derived from their respective components in Fig. S7a. The incident angle of the plane waves is αi = 42◦, with
refracted and reflected angles of αt = 24◦ and αr = 24◦, respectively. The ratio tanαt/ tanαi = 2.02 closely matches
the refractive index ratio n1/n0 = 2, verifying Snell’s law in Eq. (S12) of the main text. For the wave packet, the
incident angle is βi = 61◦, while the refracted and reflected angles are βt = 43◦ and βr = 43◦, respectively. The ratio
tanβt/ tanβi = 1.93 is close to the refractive index ratio, validating the geometric relationship of the wave packet
described in Eq. (S13) of the main text.

Next, we validate the Fresnel equations presented in Eq. (9) of the main text. In Fig. S7d, the incident wave
splits into a refracted wave and a reflected wave in the time domain. In the frequency domain, as shown in Fig. S7e,
the frequencies of the refracted and reflected waves are approximately half that of the incident wave, quantitatively
confirming the frequency shift after passing through the temporal interface, as described in Eq. (7) of the main text.
In Fig. S7f, the incident wave splits into a refracted wave and a reflected wave in the spatial domain. The spectral
data from Fig. S7f is presented in Fig. S7g. The wavenumbers of the waves remain constant, indicating momentum
conservation. The peak amplitude shifts from 1 in the incident wave to 1.5 in the refracted wave and 0.5 in the
reflected wave, aligning with the results calculated using the Fresnel equations in Eq. (9) of the main text.

Furthermore, Fig. S7h presents the normalized amplitude distributions of the incident, transmitted, and reflected
waves, with each normalized by the amplitude of the incident wave. This confirms that the amplitude ratio is
independent of the wavenumber (frequency), as predicted by Eq. (7) of the main text. Additionally, the phase factors
are deduced from the wave packet dynamics shown in Fig. S7i. The phase of the transmitted wave remains unchanged
relative to the incident wave, while the phase of the reflected wave shifts by π relative to the incident wave across
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FIG. S7. Numerical investigation of temporal refraction and reflection in a long metabeam. a The refraction and
reflection process of an incident wave packet, consisting of 5 cycles in the time domain, visualized in a spacetime diagram.
Here, L = 2.56m and tf = 6ms. b The dispersion curves of the medium before (orange) and after (blue) the switching
event, overlaid with a background contour diagram obtained from a 2D Fourier transform of the spacetime data in a. c The
angular relationship between the incident, reflected, and refracted waves for both a plane wave and a wave packet, with arrows
translated from the spacetime diagram in a. d The incident (purple) and reflected (blue) signals measured at x = 0.28L, and
the refracted signal (orange) observed at x = 0.62L. e The spectral analysis of the time-domain signals in d. f The incident
spatial profile (purple) measured at t = 0.25tf , along with the reflected and transmitted spatial profiles (blue and orange,
respectively) measured at t = 0.75tf . g The spectral analysis of the spatial-domain signals in f. h The normalized spectral
data for the incident, reflected, and refracted waves in g, each normalized by the amplitude distribution of the incident wave.
i The relationship between phase and wavenumber.

different wavenumbers, consistent with Eq. (9) of the main text.

5. REFRACTION AND REFLECTION AT A TIME INTERFACE FOR THE SWITCH FROM OFF TO
ON IN EXPERIMENT

In this section, we examine temporal refraction and reflection during a switch transition from OFF to ON for an
incident wave with a frequency of 6 kHz. The setup and parameters are identical to those in Fig. 2 of the main text.
In this scenario, the refractive index ratio is n1/n0 = 1.17, and the impedance ratio is Z1/Z0 = 0.85. In Fig. S8a, the
incident wave splits into a refracted wave and a reflected wave after passing through the time interface. In Fig. S8b,
the incident angle of the plane waves is αi = 48◦, with refracted and reflected angles of αt = 43◦ and αr = 43.5◦,
respectively. The ratio tanαt/ tanαi = 0.84 closely matches the refractive index ratio n1/n2 = 0.85, validating Snell’s
law as described in Eq. (S12) of the main text.

A 2D Fourier transform is applied to the data in Fig. S8a, with the results shown in Fig. S8c. In Fig. S8b, the
frequency of the incident wave shifts from f0 to 0.83f0 and −0.83f0, while the wavenumber remains constant. To
further confirm the frequency conversion and wavenumber invariance, time-domain signals measured at x/L = 0.05
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FIG. S8. Temporal refraction and reflection in the metabeam with switch from OFF to ON. a (b) The top panels
show the simulation (a) and experiment (b) of wave scattering from an incident wave packet consisting of 3 cycles in the time
domain, with tf = 1.1ms and t1 = 0.44ms, at a time interface in a spacetime diagram. The bottom panels depict the system,
with L = 0.32m, composed of two aluminum beams (Al) and a piezo-metabeam (Piezo), with the excitation (lightning symbol)
located at the left interface. c The 2D Fourier transform of the experimental data shown in b. d The incident (purple) and
reflected (blue) signals measured at x = 0.05L. e The refracted signal (orange) observed at x = L. f The spectral analysis of
the time-domain signals from d and e. g The incident spatial profile (purple) measured at t = 1/3tf , along with the reflected
and transmitted spatial profiles (blue and orange, respectively) at t = 2/3tf . h The spectral analysis of the spatial-domain
signals from g. i The normalized spectral data for the reflected and refracted waves in h, each normalized by the amplitude
distribution of the incident wave.

and x/L = 1 are shown in Fig. S8d,e, where three distinct wave packets corresponding to the incident, refracted, and
reflected waves are clearly visible. The normalized frequencies ft/f0 = 0.83 for the refracted wave and fr/f0 = 0.83
for the reflected wave quantitatively confirm the frequency shift relative to the incident wave, as shown in Fig. S8f,
indicating a breakdown of energy conservation. Additionally, the spatial-domain signals measured at t/tf = 1/3
and t/tf = 2/3 are shown in Fig. S8g. The central wavenumbers kt for the refracted wave and kr for the reflected
wave are consistent with the central wavenumber k1 of the incident wave, as depicted in Fig. S8h, demonstrating
the conservation of momentum. The normalized spectral data for the refracted and reflected waves is presented in
Fig. S8i, where the normalized amplitudes are independent of the wavenumber and closely align with the theoretical
predictions, thereby verifying the Fresnel equation in Eq. (9) of the main text.

6. REFRACTION AND REFLECTION AT A TIME INTERFACE FOR DIFFERENT FREQUENCIES IN
THE EXPERIMENT

In this section, we examine wave refraction and reflection at different excitation frequencies, specifically 8 kHz (Fig.
S9a–f) and 10 kHz (Fig. S9g–l), for switching transitions from ON to OFF and from OFF to ON, respectively. The
excitation frequency refers to the frequency of the signal generated by the function generator, which may differ slightly
from the incident frequency, defined as the peak position in the wave spectrum. The switching time in these cases is
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FIG. S9. Spectral analysis of wave refraction and reflection at a time interface across different frequencies. a
(d) The incident temporal profile (purple) with an excitation frequency of 8 kHz, measured at t = 1/3tf , and the reflected
temporal profile (orange) at t = 2/3tf . The switch transitions from ON to OFF (a) and from OFF to ON (d). b (e) The
reflected and refracted temporal profiles (blue) at t = 2/3tf . c (f) The spectral analysis of the incident, refracted, and reflected
waves. g (j) The incident temporal profile (purple) with an excitation frequency of 10 kHz, measured at t = 1/3tf , and the
reflected temporal profile (orange) at t = 2/3tf . The switch transitions from ON to OFF (g) and from OFF to ON (j). h (k)
The reflected and refracted temporal profiles (blue) at t = 2/3tf . i (l) The spectral analysis of the incident, refracted, and
reflected waves.

FIG. S10. The effect of finite switching time. a Different waveforms of n(t) with parameters δ = 0.5 and α = 1. b
Temporal refraction and reflection ratios as a function of ∆t/T , where T is the period of the incident wave.

the same as that used for the case with an excitation frequency of 6 kHz.

As shown in Fig. S9c (f), the frequencies of the refracted and reflected waves shift from 8 kHz (incident wave) to 9
kHz and 7 kHz, respectively. In Fig. S9i (l), the frequencies of the refracted and reflected waves shift from 9.5 kHz
(incident wave) to 9.8 kHz and 8.5 kHz, respectively.

For the 10 kHz case, the frequency shift does not satisfy Snell’s law precisely. This discrepancy arises because the
relatively high frequency leads to a smaller wavelength, increasing the ratio of the unit cell length to the wavelength.
Consequently, the long-wave approximation is less valid, and the metabeam can no longer be considered a homogeneous
beam. Furthermore, at higher frequencies, the homogeneous Euler-Bernoulli beam model becomes invalid, making
the reflection and refraction less distinguishable and leading to inaccuracies in the frequency shift.
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7. NUMERICAL INVESTIGATION OF THE EFFECT OF FINITE SWITCHING TIME

In the experiment, the switch does not transition instantaneously between states. In this section, we analyze the
effect of finite switching time on the amplitudes of the refracted and reflected waves. To study this, various smooth
time boundaries are modeled using the analytical function n(t) = ∆n

π arctan
(
t−tc
∆t

)
+n0+

∆n
2 , where n0 and ∆n = n0

represent the initial and changed refractive indices, and ∆t/T determines the sharpness of the waveform. Here, T is
the period of the incident wave.

In Fig. S10a, the smooth step function is displayed for different values of ∆t/T . The corresponding normalized
amplitudes of the refracted and reflected waves, relative to the incident wave, are shown in Fig. S10b. The numerical
setup in this section is the same as that described in Part B of Supplementary Section IV. When ∆t/T is very small
(less than 0.1), the amplitudes of both the refracted and reflected waves remain constant and closely align with the
theoretical predictions from Fresnel’s formula. As long as ∆t/T stays within this range, the time interface can be
regarded as ideal. In our experiment, ∆t/T = 0.001, which is much smaller than 0.1, confirming that the interface
behaves as an ideal time interface.

If ∆t/T exceeds 0.1, the amplitudes of both the refracted and reflected waves decrease as ∆t/T increases. However,

the amplitude of the refracted wave approaches a finite value of
√
2, while the amplitude of the reflected wave diminishes

to zero. This indicates that no reflected wave is generated when the refractive index changes very gradually. This
behavior can be explained by the adiabatic theorem, which states that a system will remain in the same eigenstate if
its parameters vary slowly enough. In the adiabatic limit, the wave’s evolution can be described by [2, 3]:

w(x, t) =
Ai√
ω(t)

e
ikx−

∫ t
t0

ω(t′)dt′
. (S2)

In this scenario, the wave remains a right-propagating wave, with its amplitude and frequency gradually changing over
time and no reflected wave being generated. Since the ratio of the final frequency to the initial frequency is

√
2, the

normalized amplitude of the refracted wave becomes
√
2, consistent with the results shown in Fig. S10b. Between the

sudden-change limit and the adiabatic limit, the normalized amplitudes vary continuously as ∆t/T increases, falling
within the range defined by these two extremes.

8. NUMERICAL STUDY OF TEMPORAL REFRACTION AND REFLECTION OF AN ASYMMETRIC
PULSE

In this section, we demonstrate that the observed reflection is a temporal reflection rather than a spatial one. To
highlight this distinction, we consider the scattering of an asymmetric pulse at a temporal interface. The simulation
setup is identical to that described in Supplementary Section 4B. As shown in Fig. S11a, the spacetime diagram
captures the behavior of the pulse upon encountering the interface.

Key differences between spatial and temporal reflections are evident in the order of pulse peaks. For spatial
reflection, the higher peak of the incident pulse appears first, followed by the lower peak. In contrast, temporal
reflection reverses this order: the lower peak arrives first, and the higher peak follows. This reversal in the time
domain is shown in the normalized signals in Fig. S11b. Here, the incident (w̄i) and reflected (w̄r) signals, measured
at x/L = 0.3, clearly demonstrate this inversion. In the spatial domain, the incident waves are shown in Fig. S11c.
Fig. S11d displays the refracted (w̄t) and reflected (w̄r) signals, which are normalized and measured at t/tf = 0.3.
The reflected wave packet with the smaller peak appears first, followed by the reflected wave packet with the larger
peak, which is opposite to the order observed in spatial reflection.

9. DERIVATION OF TEMPORAL CONTINUITY CONDITIONS

The equation of motion for the Euler-Bernoulli beam is given by:

∂tp = ∂xxM + q(t), (S3)

where p = ρA∂tw represents the momentum, M is the bending moment, and q is a time dependent external force.
Meanwhile, the bending curvature κ is defined as

κ = ∂xxw. (S4)
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FIG. S11. Refraction and reflection of an asymmetric pulse at a time interface. a The spacetime diagram of a
simulated asymmetric pulse scattering at a temporal interface. b The normalized incident (w̄i) and reflected (w̄r) signals
measured at x/L = 0.3. The purple wave packet represents the incident wave with a higher amplitude, while the light purple
wave packet corresponds to the incident wave with a lower amplitude. Similarly, the blue wave packet represents the reflected
wave generated by the higher-amplitude incident wave, and the light blue wave packet corresponds to the reflected wave
generated by the lower-amplitude incident wave. c The normalized incident (w̄i) signal measured at t/tf = 0.3. The purple
wave packet represents the incident wave with a higher amplitude, while the light purple wave packet corresponds to the incident
wave with a lower amplitude. d The normalized refracted (w̄t) and reflected (w̄r) signals measured at t/tf = 0.3. The orange
wave packet represents the refracted wave with a higher amplitude, while the light orange wave packet corresponds to the
incident wave with a lower amplitude. Similarly, the blue wave packet represents the reflected wave generated by the higher-
amplitude incident wave, and the light blue wave packet corresponds to the reflected wave generated by the lower-amplitude
incident wave.

The bending momentum and bending curvature satisfy the constitutive relation

M = −D(t)κ. (S5)

where D(t) = E(t)I is the time-dependent bending stiffness, E(t) is the time-dependent Young’s modulus, and I it
the second moment of area. Substituting Eq. (S5) and Eq. (S4) into the equation of motion (Eq. (S3)) yields the
governing equations for the Euler-Bernoulli beam, as presented in Eq. (1) of the main text

∂

∂t

(
ρA

∂w(x, t)

∂t

)
+

∂2

∂x2

(
D(t)

∂2w(x, t)

∂x2

)
= q(t). (S6)
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Integrating Eq. (S6) from initial time t′ to an arbitrary time t gives

ρA
∂w(x, t)

∂t

∣∣∣t
t′
+

∫ t

t′
dtD(t)

∂4w(x, t)

∂x4
=

∫ t

t′
q(t)dt. (S7)

Taking t′ = t−1 = t1 − ϵ to t = t+1 = t1 + ϵ with a ϵ → 0+, we expect that the second term in Eq. (S7) is zero, due to
the finite values of fields. The term on the right-hand side represents the impulse, which is not considered in our study
and is therefore set to zero. Then, we obtain the first temporal boundary condition that describes the continuity of
momentum:

ρA
∂w

∂t

∣∣∣
t=t+1

= ρA
∂w

∂t

∣∣∣
t=t−1

. (S8)

Since the density is time-independent, Eq. (S8) implies the continuity of velocity

∂w

∂t

∣∣∣
t=t+1

=
∂w

∂t

∣∣∣
t=t−1

. (S9)

Similarly, integrating Eq. (S7) from t−1 to t+1 as ϵ → 0+ with respect to t without the impulse gives the second
temporal boundary condition that describes the continuity of displacement:

w|t=t+1
= w|t=t−1

. (S10)

10. RELATIONSHIP BETWEEN THE ANGLES OF INCIDENCE AND REFRACTION

In the main text, the Snell’s law is written as

ω1n1 = ω0n0. (S11)

The more familiar form describing the geometric relationship between the angles of the incident and refracted waves
in a space-time diagram is presented as follows.

In the (x, ct) space, where c is a reference speed to maintain dimensional consistency, the angle α between the
propagation direction of a plane wave (with phase velocity ω/k) and the time axis satisfies the relation tanα =
ω/(kc) = k/(nc). This results in the geometric relationship between the angle of incidence and the angle of refraction:

tanα0

tanα1
=

n1

n0
. (S12)

Eq. (S12) can be interpreted as the temporal Snell’s law, describing the geometric relationship between the angles
of the incident and refracted waves in a space-time diagram. This is analogous to the traditional Snell’s law, which
applies to wave propagation in two-dimensional space.

The dispersion relation of flexural waves is a quadratic function, making them dispersive, meaning the propagation
direction of a wave packet differs from that of a plane wave. We now explore the geometric relationship between the
incident and refracted angles of the wave packet. The angle between the propagation direction of the wave packet
and the time axis is defined as tanβ = vg/c, where the group velocity vg = dω/dk = 2k

√
D/ρA = 2k/n. Therefore,

the geometric relationship between the incident and refracted angles of the wave packet is

tanβ0

tanβ1
=

n1

n0
. (S13)

Interestingly, this relationship is the same as the temporal Snell’s law for plane waves.
Fig. S12 shows the relationship between the angles of incidence and refraction in a space-time diagram. Here, the

angle of the incident plane wave αi, the angle of the refracted plane wave αt, and the angle of the reflected plane
wave αr are 49◦, 52◦, and 52.5◦, respectively. The ratios tanαi/ tanαt = 0.9 and tanαi/ tanαr = 0.88 are close to
the refractive index ratio n1/n0 = 0.85, confirming the temporal Snell’s law in Eq. (S12). The geometric relation
of the wave packet in Eq. (S13) is verified in a longer metabeam using 5-cycle tone-burst excitation, as detailed in
Supplementary Section 4B.
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FIG. S12. Relationship between the angles of incidence, refraction, and reflection.

11. NOETHER’S THEOREM AND CONSERVATION LAWS

A. Complex scalar field theory for the Euler-Bernoulli beam

As we know, when a flexural incident wave encounters an interface where the refractive index of the beam changes
abruptly, it splits into a refracted wave and a reflected wave, as shown in Fig. S13a,b. Remarkably, the governing
equation of the Euler-Bernoulli beam model inherently supports space-time duality, implying temporal analogs of re-
flection and refraction when a flexural wave encounters a time boundary, as illustrated in Fig. S13c,d. Wave scattering
at both spatial and temporal boundaries adheres to Noether’s theorem, which reveals the fundamental connection
between the symmetries of a physical system and its conservation laws. In systems with abrupt spatial changes, the
breakdown of space translation invariance leads to the non-conservation of momentum. However, the system remains
invariant in the time direction, preserving time translation invariance and, consequently, the conservation of energy.
In this section, energy and momentum are derived as Noether’s charges in accordance with Noether’s theorem.

In this paper, we examine wave propagation in the frequency domain, which involves complex analysis. There
are two methods for deriving Noether’s charge. The first method involves obtaining the expression for Noether’s
charge using real scalar field theory, followed by applying a periodic average to derive the corresponding charge in the
complex domain [4, 5]. The second method derives the expression for Noether’s charge directly from complex scalar
field theory, avoiding time averaging. In this study, we employ the second method.

The complex scalar field is defined as w(x, t) = [wr(x, t) + iwi(x, t)] /
√
2, constructed from two identical real fields,

wr(x, t) and wi(x, t) [6–8]. For convenience, we use w(x, t) and w†(x, t) as independent variables instead of wr(x, t)
and wi(x, t). The Lagrangian for the Euler-Bernoulli beam can be extended from that of real scalar field theory [9]
as follows:

L =
1

2
ρA∂tw

†(x, t)∂tw(x, t)−
1

2
EI∂xxw

†(x, t)∂xxw(x, t) (S14)

And the action S, the time integral of the Lagrangian L, can be written as

S =

∫
Ldt =

∫
L
(
wt, w

†
t , wxx, w

†
xx

)
dxdt (S15)
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FIG. S13. Refraction and reflection of flexural waves at a time interface.a (c) Spacetime diagram of wave refraction
and reflection at a spatial (temporal) interface. The subscripts i, r, and t correspond to the incident, reflected, and refracted
waves, respectively. b (d) The top panel shows the index of refraction versus x(t), with an abrupt change at x1(t1). The
bottom panel displays the dispersion curves: the medium before (after) x1(t1) is represented by a purple (orange) solid line.
The blue, red, and yellow points correspond to the incident, reflected, and refracted waves, respectively.

The principle of least action states [6]

0 = δS

=

∫
dxdt

{
∂L

∂ (∂tw)
δ (∂tw) +

∂L
∂ (∂xxw)

δ (∂xxw) +
∂L

∂ (∂tw†)
δ
(
∂tw

†)+ ∂L
∂ (∂xxw†)

δ
(
∂xxw

†)}

=

∫
dxdt

{
∂t

(
∂L

∂ (∂tw)
δw

)
− ∂t

(
∂L

∂ (∂tw)

)
δw + ∂x

(
∂L

∂ (∂xxw)
∂xδw

)
− ∂x

(
∂x

∂L
∂ (∂xxw)

δw

)
+ ∂xx

(
∂L

∂ (∂xxw)

)
δw

+ ∂t

(
∂L

∂ (∂tw†)
δw†

)
− ∂t

(
∂L

∂ (∂tw†)

)
δw† + ∂x

(
∂L

∂ (∂xxw†)
∂xδw

†
)
− ∂x

(
∂x

∂L
∂ (∂xxw†)

δw†
)
+ ∂xx

(
∂L

∂ (∂xxw†)

)
δw†

}

=

∫
dxdt

{
− ∂t

(
∂L

∂ (∂tw)

)
δw + ∂xx

(
∂L

∂ (∂xxw)

)
δw − ∂t

(
∂L

∂ (∂tw†)

)
δw† + ∂xx

(
∂L

∂ (∂xxw†)

)
δw†

}
(S16)

where the rules of variational operations can be found in [10]. By factoring out δw (δw†) from the first two terms
(last two terms), we note that, since the integral must vanish for arbitrary δw (δw†), the quantity multiplying δw
(δw†) must also vanish at all points. This leads us to the Euler-Lagrange equation of motion for the complex field:

∂t

(
∂L

∂ (∂tw)

)
− ∂xx

(
∂L

∂ (∂xxw)

)
= 0 (S17)

∂t

(
∂L

∂ (∂tw†)

)
− ∂xx

(
∂L

∂ (∂xxw†)

)
= 0. (S18)
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B. Time translation symmetry and energy conservation

We can describe the infinitesimal translation of time as

t → t+ δt (S19)

alternatively as a transformation of the field configuration

w(x, t) → w(x, t) = w(x, t) + δt∂tw(x, t),

w†(x, t) → w†(x, t) = w†(x, t) + δt∂tw
†(x, t).

(S20)

More generally, we can allow the action to change by a surface term, since the presence of such a term would not
affect our derivation of the Euler-Lagrange equations of motion Eq. (S17,S18). The Lagrangian, therefore, must be
invariant under Eq. (S19) up to a divergence:

L → L+ δt∂tL. (S21)

On the other hand, the change in the Lagrangian density L is then given by

δL =
∂L

∂ (∂tw)
δ (∂tw) +

∂L
∂ (∂tw†)

δ
(
∂tw

†)+ ∂L
∂ (∂xxw)

δ (∂xxw) +
∂L

∂ (∂xxw†)
δ
(
∂xxw

†)
=

∂L
∂ (∂tw)

∂t (δw) +
∂L

∂ (∂tw†)
∂t

(
δw†)+ ∂L

∂ (∂xxw)
∂xx (δw) +

∂L
∂ (∂xxw†)

∂xx
(
δw†)

= δt

[
∂L

∂ (∂tw)
∂t (wt) +

∂L
∂ (∂tw†)

∂t

(
w†

t

)
+

∂L
∂ (∂xxw)

∂xx (wt) +
∂L

∂ (∂xxw†)
∂xx

(
w†

t

)] (S22)

Multiplying Eq. (S17) with δtwt and Eq. (S18) with δtw†
t , and adding them into Eq. (S22) gives

δL = δt∂t

(
∂L

∂ (∂tw)
wt +

∂L
∂ (∂tw†)

w†
t

)
+ δt∂x

[
∂x

(
∂L

∂ (∂xxw)

)
wt + ∂x

(
∂L

∂ (∂xxw†)

)
w†

t +
∂L

∂ (∂xxw)
wxt +

∂L
∂ (∂xxw†)

w†
xt

] (S23)

The Lagrangian density L could very well change by a divergence δL = δt∂tL. Therefore, the combination of Eq.
(S23) and Eq. (S21) upon arbitrary infinitesimal time translation δt leads to

∂tj
tt + ∂xj

tx = 0, (S24)

where

jtt =
∂L

∂ (∂tw)
wt +

∂L
∂ (∂tw†)

w†
t − L

jtx = ∂x

(
∂L

∂ (∂xxw)

)
wt + ∂x

(
∂L

∂ (∂xxw†)

)
w†

t +
∂L

∂ (∂xxw)
wxt +

∂L
∂ (∂xxw†)

w†
xt

(S25)

Then, performing the integration over x at constant time gives

∂t

∫
jttdx = 0, (S26)

where
∫
∂xj

txdx = 0 is used because this will vanish if the line is long enough [8]. Now we define H as the energy
density:

H =
∂L

∂ (∂tw)
∂tw +

∂L
∂ (∂tw†)

∂tw
† − L (S27)

And the Hamiltonian (energy)

H =

∫
Hdx =

∫
dx

(
1

2
ρA∂tw

†(x, t)∂tw(x, t) +
1

2
EI∂xxw

†(x, t)∂xxw(x, t)

)
. (S28)
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is conserved for system with time translation symmetry according to Eq. (S26). The energy before the switching
event is

H0 =

(
1

2
ρAω2

0 +
1

2
E0I0k

4
0

)
A2

i =
1

Z2
0

ρAA2
i , (S29)

whereas the energy density after the switching event is

H1 =

(
1

2
ρAω2

1 +
1

2
E1I1k

4
1

)(
T 2 +R2

)
A2

i =
Z2
0 + Z2

1

2Z4
1

ρAA2
i =

Z4
0 + Z2

0Z
2
1

2Z4
1

H0, (S30)

where Eq. (9) in the main text is used. Now we can be easily verified that the energy in Eq. (S30) is not conserved:

H1 ̸= H0 (S31)

for temporal media with Z0 ̸= Z1. We conclude that the breaking of time translation symmetry leads to the breakdown
of the conservation of energy.

C. Space translation symmetry and momentum conservation

We can describe the infinitesimal translation of time as

x → x+ δx (S32)

alternatively as a transformation of the field configuration

w(x, t) → w(x, t) = w(x, t) + δx∂xw(x, t),

w†(x, t) → w†(x, t) = w†(x, t) + δx∂xw
†(x, t).

(S33)

More generally, we can allow the action to change by a surface term, since the presence of such a term would not
affect our derivation of the Euler-Lagrange equations of motion Eq. (S17,S18). The Lagrangian, therefore, must be
invariant under Eq. (S32) up to a divergence:

L → L+ δx∂xL. (S34)

On the other hand, the change in the Lagrangian density L is then given by

δL =
∂L

∂ (∂tw)
δ (∂tw) +

∂L
∂ (∂tw†)

δ
(
∂tw

†)+ ∂L
∂ (∂xxw)

δ (∂xxw) +
∂L

∂ (∂xxw†)
δ
(
∂xxw

†)
= δx

[
∂L

∂ (∂tw)
∂t (wx) +

∂L
∂ (∂tw†)

∂t
(
w†

x

)
+

∂L
∂ (∂xxw)

∂xx (wx) +
∂L

∂ (∂xxw†)
∂xx

(
w†

x

)] (S35)

Multiplying Eq. (S17) with δxwx and Eq. (S18) with δxw†
x, and adding them into Eq. (S35) gives

δL = δx∂t

(
∂L

∂ (∂tw)
wx +

∂L
∂ (∂tw†)

w†
x

)
+ δx∂x

[
∂x

(
∂L

∂ (∂xxw)

)
wx + ∂x

(
∂L

∂ (∂xxw†)

)
w†

x +
∂L

∂ (∂xxw)
wxx +

∂L
∂ (∂xxw†)

w†
xx

] (S36)

The Lagrangian density L may change by a divergence, δL = δx∂xL. Therefore, combining Eq. (S35) and Eq. (S34)
under an arbitrary infinitesimal time translation δx results in the following expression:

∂tj
tx + ∂xj

xx = 0, (S37)

where

jtx =
∂L

∂ (∂tw)
wx +

∂L
∂ (∂tw†)

w†
x

jxx = ∂x

(
∂L

∂ (∂xxw)

)
wx + ∂x

(
∂L

∂ (∂xxw†)

)
w†

x +
∂L

∂ (∂xxw)
wxx +

∂L
∂ (∂xxw†)

w†
xx

(S38)
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Then, performing the integration over x at constant time gives

∂t

∫
jtxdx = 0, (S39)

where
∫
∂xj

xxdx = 0 is used because this will vanish if the line is long enough [8]. Now we define p as the momentum
density:

p = jtx =
∂L

∂ (∂tw)
∂xw +

∂L
∂ (∂tw†)

∂xw
† (S40)

The conserved charges (momentum) associated with spatial translations are

P =

∫
pdx =

∫
dxρA[

(
∂tw

†)wx + (∂tw)w
†
x]. (S41)

The momentum of the wave before the switching event is

P0 = 2ρAω0k0A
2
i , (S42)

whereas the momentum of waves after the switching event is

P1 = 2ρAω1k1(T
2 −R2)A2

i . (S43)

With the aid of Eq. (9) in the main text, the momentum conservation can be easily verified that

P0 = P1 = 2Z0k
3
0A

2
i . (S44)

12. OPTIMIZATION METHOD FOR BROADBAND ANTI-REFLECTION AND WAVE
AMPLIFICATION AT MULTIPLE TIME INTERFACES

In this section, we provide a detailed description of the optimization problem for designing temporal multilayer
media aimed at eliminating broadband reflected waves and enhancing wave amplification.

For single-frequency reflected wave elimination, the optimization problem can be proposed as

minimize
n1,t2

|R(n1, t2, f0 = 6 kHz)|2

subject to n0 ≤ n1 ≤ 2n0,
∆t1 > 0

(S45)

For broadband reflected wave elimination, the optimization problem can be proposed as

minimize
n,t

∫ fb
fa

|R(n, t), f0|2df0
subject to min(n0, nM+1) ≤ ni ≤ max(n0, nM+1), i = 1, . . . ,M

∆tj > 0, j = 1, . . . ,M

(S46)

where fa = 0.5f0, fb = 1.5f0, M = 4, nM+1 = 2n0.
For wave amplification, the optimization problem can be proposed as

minimize
n,t

−|T (n, t, f0 = 6 kHz)|2

subject to 0 ≤ ni ≤ 3n0, i = 1, . . . ,M
∆tj > 0, j = 1, . . . ,M

(S47)

where T (n, t) is the refraction coefficient, M = 3, nM+1 = n0.
The constrained nonlinear optimization problem is solved numerically by calling the MATLAB function ”fmincon”

with given random initial conditions satisfying the constraints, where the sequential quadratic programming (SQP)
algorithm is implemented.
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13. RESISTOR FUNCTIONS IN SMART WAVEFORM MORPHING AND INFORMATION

In the main text, the transfer functions can be modulated into various forms, such as sinusoidal functions and
smooth step functions for smart waveform morphing and information coding. The sinusoidal function of the resistor
in Fig. 6b of the main text is

R1(t) = 5.1 + 0.1 cos
2πt

T
(S48)

where T = 0.2 s. The smooth step function of the resistor in Fig. 6e of the main text is

R1(t) =



5.2 0 ≤ t ≤ T−∆T
2

0.2× t−mT/2+∆T/2
∆T + 5.2 mT−∆T

2 ≤ t ≤ mT+∆T
2

5.4 mT+∆T
2 ≤ t ≤ mT − ∆T

2

−0.2× t−mT+∆T/2
∆T + 5.4 mT − ∆T

2 ≤ t ≤ mT + ∆T
2

5.2 mT + ∆T
2 ≤ t ≤ 3mT

2 − ∆T
2

0.2× t−3mT/2+∆T/2
∆T + 5.2 3mT−∆T

2 ≤ t ≤ 3mT+∆T
2

, m = 1, 2, 3..., (S49)

where T = 0.2 s and ∆T = 0.02 s. The smooth step function of the resistor in Fig. 7b of the main text is

R1(t) =



5.2 0 ≤ t ≤ 2T−∆T
2

0.2× t−T+∆T/2
∆T + 5.2 T−∆T

2 ≤ t ≤ 2T+∆T
2

5.4 2T+∆T
2 ≤ t ≤ 3T−∆T

2

−0.08× t−3T+∆T/2
∆T + 5.4 3T−∆T

2 ≤ t ≤ 2T + ∆T
2

5.32 2T + ∆T
2 ≤ t ≤ 5T

2 − ∆T
2

−0.12× t−5T/2+∆T/2
∆T + 5.32 5T−∆T

2 ≤ t ≤ 5T+∆T
2

5.2 5T−∆T
2 ≤ t ≤ 3T

, (S50)

where T = 0.2 s and ∆T = 0.02 s.
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