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•  Rayleigh wave model in axisymmetric mode and solutions in cylindrical coordinates.
•  Same velocity as Cartesian coordinates confirming irrelevancy to coordinate systems.
•  Strength decreases slowly for solution in Bessel functions decaying with radius.
•  Treated as plane wave in far field with the Bessel approximated by the trigonometric.
•  Particle trajectory of axisymmetric Rayleigh wave is a straight line, not eclipse.
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It is well-known that Rayleigh wave, also known as surface acoustic wave (SAW), solutions in semi-
infinite solids are plane waves with signatory properties like the distinct velocity and exponentially
decaying deformation in the depth. Applications of Rayleigh waves are focused on the deformation
and energy in the vicinity of surface of solids and less loss in the propagation. A generalized model
of Rayleigh waves in axisymmetric mode is established and solutions are obtained with cylindrical
coordinates.  It  is  found  that  the  Rayleigh  waves  also  propagate  in  the  axisymmetric  mode  with
slow decay in radius, confirming the existence of surface acoustic waves is irrelevant to coordinate
system. On the other hand, the solutions can be treated as plane waves in regions far  away from
the source. Furthermore, the particle trajectory of axisymmetric SAW is a line with constant slope
rather than the signatory ellipse in Cartesian coordinate case.
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Rayleigh waves, also known as surface acoustic waves (SAW),
are widely known and frequently utilized in various engineering
applications  such  as  earthquake  engineering,  acoustic  wave
devices, sensors, medical instruments, among others. In the be-
ginning, Rayleigh wave solutions are given in Cartesian coordin-
ates  with  plane  wave  assumptions  [1].  The  special  features  of
Rayleigh  waves  such  as  the  distinct  velocity  and  exponentially
decaying  along  the  depth  have  generated  a  lot  of  interests  and
found many applications by taking the advantage of  less loss in
propagation. Recently, axisymmetric structures for SAW genera-
tion and propagation have been proposed and tested [2, 3], ex-
hibiting  a  growing  demand  for  analysis  of  SAW  in  such  special

structures.  Driving  by  novel  applications,  it  is  found  that  the
SAW mode  in  axisymmetric  structures,  though  simple  and  nat-
ural  as  it  is,  has  not  been  carefully  investigated.  Consequently,
the  features  of  axisymmetric  SAW  and  advantages  have  to  be
presented  to  lead  in-depth  efforts  in  developing  more  creative
technology and innovative applications.

In reality,  seismic waves which are triggered by a point load
near the earth surface, so does the ripples stirred by throwing a
piece  of  small  rock  into  a  tranquil  pond,  because  they  all  are
axisymmetric surface  waves  with  a  circular  wavefront.  In  com-
parison  with  planar  surface  waves,  which  are  widely  utilized  in
engineering, especially in the SAW devices which are essential in
wireless  communications,  filters,  sensors  and  so  on  [4–6],  the
axisymmetric surface waves are seldom focused by researchers.
Currently,  circular  SAW  devices  based  on  axisymmetric  surface
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waves are used to improve the transmission characteristics and
loss notably  in  comparison  to  traditional  rectangular  architec-
tures [2, 3]. Moreover, axisymmetric SAW is also used in the mi-
crofluidics such  as  the  jetting  of  droplets  by  the  focusing  prop-
erty  of  circular  SAW  [7, 8].  Furthermore,  circular  SAW  devices
can  actuate  the  circular  wave  packets  which  can  be  used  in
acoustic tweezers to manipulate cells or particles [9, 10].

The research of  axisymmetric  surface wave was first  studied
by Lamb in 1904 [11], soon afterwards Lord Rayleigh discovered
the planar SAW [1]. Because of the interest from the seismology,
Lamb considered it as a classical elasticity problem that is to ob-
tain  the  transient  response  to  a  time-harmonic  load  normal  to
the  surface  of  the  semi-infinite  media  and  that  is  referred  to  as
“Lamb's  Problem”  now.  He  transformed  the  wave  equations  of
the potential function from Cartesian coordinates into cylindric-
al  coordinates  at  first  and then obtained the explicit  expression
of axisymmetric  surface  waves  directly.  Once  the  explicit  solu-
tions  were  obtained,  the  dynamic  response  can  be  obtained  by
the Fourier transformation obviously. The integral of the inverse
Fourier  transformation  is  difficult  to  calculate  for  generalized
loadings,  but  Lamb  found  it  can  be  solved  approximately  for
normal point and line loads. After that, many other cases of dif-
ferent loadings  were  considered  and  other  approximate  ap-
proaches  were  developed  by  latter  researchers.  For  example,
Chao [12] solved a similar problem while the half-space solid has
a point load that is tangential to the surface and Achenbach con-
sidered a more realistic problem with a buried point load in ap-
proximating  the  earthquake  and  solved  it  by  the  reciprocal
method  [13].  For  more  detailed  description  of  this  problem,  it
can be referred to popular textbooks of wave motion [14–20].

Although  the  explicit  solutions  of  axisymmetric  surface
waves were found by Lamb and many transient response prob-
lems were studied by others, a systematic study with cylindrical
coordinates  and the  comparison between axisymmetric  surface
waves  and  planar  surface  waves  was  not  presented.  Questions
such as  the  velocity  of  both  waves  and  differences  of  displace-
ments are  remaining  to  be  answered.  To  provide  detailed  an-
swers,  the  equations  of  the  potential  function  of  axisymmetric
SAW in the cylindrical coordinate system were derived in a sys-
tematic  manner  and  they  were  solved  by  the  standard  method
which  can  be  found  in  popular  books  on  wave  propagation
[14–20]. After going through a standard procedure, we obtained
the velocity and displacement solutions of axisymmetric SAW in
a  semi-infinite  elastic  solid  with  cylindrical  coordinates.  It  is
found  that  the  axisymmetric  SAW  propagates  with  Rayleigh
wave velocity,  and  the  displacements  are  also  decaying  expo-
nentially along the depth, proving the existence of axisymmetric
SAW.

Governing  equations  and  solutions  of  axisymmetric  surface
acoustic waves in cylindrical  coordinates are derived as  the be-
ginning. We now consider that  the axisymmetric  SAWs propag-
ate  along  radius  and  decay  along  the  depth  in  a  semi-infinite
elastic  solid z>0  with  cylindrical  coordinates  shown  in Fig.  1.
Owing to the axisymmetric property for this problem, the angu-
lar coordinate θ and the circumferential displacement compon-
ent uθ are neglected. As a result, the displacement vector can be
simplified as

*
u (r, z) = ur (r, z)

*
e r +uz (r, z)

*
e z . (1)

H⃗

H⃗

Using  Helmholtz  decomposition,  we  can  introduce  a  scalar

potential Φ and  a  vector  potential  to  simplify  the  problem

[14]. With Eq. (1), we only need to retain component Hθ in , so

the displacements can be decomposed into

*
u (r, z) =∇Φ (r, z)+∇×

[
Hθ (r, z)

*
e θ

]
, (2)

∇= ∂

∂r
e⃗r + ∂

∂z
e⃗zwhere . Then the governing equations for Φ and

Hθ are [14]

∇2Φ= 1

c2
1

Φ̈,

∇2Hθ − 1

r 2
Hθ = 1

c2
2

Ḧθ, (3)

c2
1 =

(
λ+2µ

)
/ρ, c2

2 =µ/ρ,∇2 = r −1∂ (r∂/∂r )/∂r +∂2/∂z2where  and

λ and μ are Lamé constants. We further introduced the following

transformation

Hθ =−∂Ψ

∂r
, (4)

and Eq. (3) are simplified to

∇2Φ= 1

c2
1

Φ̈,

∇2Ψ= 1

c2
2

Ψ̈. (5)

Equation (5) are  the  governing  differential  equation  of

axisymmetric  surface  waves.  To  obtain  solutions,  we  also  have

the surface free boundary conditions

τzz = τr z = 0 at z = 0, (6)

where the stress components are

τzz =λ∇2Φ+2µ
∂

∂z

(
∂Φ

∂z
+ ∂2Ψ

∂z2
− 1

c2
2

Ψ̈

)
,

τr z =µ
∂

∂r

(
2
∂Φ

∂z
+2

∂2Ψ

∂z2
− 1

c2
2

Ψ̈

)
. (7)

For convenience, the displacements of axisymmetric surface

waves are also expressed by the potentials Φ and Ψ as
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Fig. 1.   A semi-infinite substrate with cylindrical coordinate.
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ur = ∂Φ

∂r
+ ∂2Ψ

∂r∂z
,

uz = ∂Φ

∂z
+ ∂2Ψ

∂z2
− 1

c2
2

Ψ̈. (8)

Since the two equations in Eq. (5) are the same, we only need
to solve  one  equation.  With  the  method  of  separation  of  vari-
ables, we retained the following solution

Φ (r, z, t ) = AJ0 (ξr )e−αz eiωt , (9)

ξ2 = (
α2 +ω2/c2

1

)
J0 (ξr )

Y0 (ξr )

r = 0 eαz

z =∞

where A is the undetermined constant, ω is angular frequency, α
is decaying constant, and ξ is the wavenumber. Moreover, these
three  variables  satisfy  the  relation ,  is  the
zeroth-order  Bessel  function  of  the  first  kind.  The  zeroth-order
Bessel function of the second kind  is neglected because of
its  singularity  at ,  and  the  exponential  function  is
neglected because it is unbounded at . Similarly, we have

Ψ (r, z, t ) = B J0 (ξr )e−βz e iωt , (10)

ξ2 =β2 +ω2/c2
2

where B is  the  undetermined  constant  and β is  decaying
constant satisfying the relation .

With  these  solutions,  we  can  use  the  relationships  between
potentials, stresses,  and  displacements  with  the  standard  pro-
cedure for wave velocity and modes.

Then,  the  velocity  and  displacements  of  the  axisymmetric
surface waves are discussed. The substitution of Eqs. (9) and (10)
into  boundary  condition (6) with  the  stresses  expressed  by  Eq.
(7) leads to(

2µα2 − λω2

c2
1

)
A−

(
2µβω2

c2
2

+2µβ3

)
B = 0,

2µξαA−
(
2µξβ2 + µξω2

c2
2

)
B = 0. (11)

ξ2 =α2 +ω2/c2
1 ξ2 =β2 +ω2/c2

2Using  and , we have(
2ξ2 − ω2

c2
2

)
A−2βξ2B = 0,

2ξαA−ξ

(
2ξ2 − ω2

c2
2

)
B = 0. (12)

ξ2 = (
β2 +ω2/c2

2

)which  is  the  same  as  Eq.  (121)  in  Lamb's  paper  [11].  Using
, Eq. (12) become(

ξ2 +β2
)

A−2βξ2B = 0,

2ξαA−ξ
(
ξ2 +β2

)
B = 0, (13)

iξB

which  are  the  same  as  the  equation  (6.1.83)  of  surface  acoustic
waves in Cartesian coordinates from Graff if  one substitutes 
with  B  in  Eq. (13) [14].  The  vanishing  of  the  coefficient
determinant in Eq. (13) gives the frequency equation for surface
acoustic waves as(
ξ2 +β2

)2 −4αβξ2 = 0. (14)

ξ2 = (
β2 +ω2/c2

2

)
ξ2 = (

α2 +ω2/c2
1

)
ω= cξ

Using  and ,  Eq. (14) can  be
expressed in terms of wave velocityc by noting  as

(
2− c2

)2 = 4

(
1− c2

c2
1

)1/2(
1− c2

c2
2

)1/2

. (15)

It  is  exactly  the  wave  velocity  equation  (6.1.86)  of  surface
acoustic  waves,  or  Rayleigh  waves,  in  Cartesian  coordinates  as
given  by  Graff  [14].  In  other  words,  these  two  types  of  waves  in
different  coordinate  systems  and  waveforms  travel  with  exactly
the same velocity in the semi-infinite elastic solid.

Then  we  can  compare  the  displacements  of  axisymmetric
surface  acoustic  waves  with  the  Cartesian  coordinate  solutions
also. The amplitude rations of Eq. (13)

A

B
= 2βξ2

ξ2 +β2
= ξ2 +β2

2α
, (16)

and the displacements become

ur =−A

(
ξe−αz − ξ2 +β2

2ξ
e−βz

)
J1 (ξr )eiωt ,

uz = A

(
−αe−αz + ξ2 +β2

2β
e−βz

)
J0 (ξr )eiωt . (17)

λR = 2π/ξIntroducing  the  wavelength λR by  noting  and tak-
ing the  real  part  of  the  displacements,  we  have  the  displace-
ments in dimensionless form as

ur =−Aξ

[
e− 2πα

ξ
z
λR − 1+ (

β/ξ
)2

2
e− 2πβ

ξ
z
λR

]
J1

(
2π

r

λR

)
cosωt ,

uz = Aξ

[
−α

ξ
e− 2πα

ξ
z
λR + 1+ (

β/ξ
)2

2β/ξ
e− 2πβ

ξ
z
λR

]
J0

(
2π

r

λR

)
cosωt . (18)

Now we calculate the displacements with ξ=2π, Aξ=1, and the
Poisson's ratio ν=0.25. The displacements of Eq. (18) are shown
in Figs. 2 and 3.

On the surface of the solid at z=0, Eq. (18) are reduced to

ur =−
[

1− 1+ (
β/ξ

)2

2

]
J1

(
2π

r

λR

)
cosωt ,

uz =
[
−α

ξ
+ 1+ (

β/ξ
)2

2β/ξ

]
J0

(
2π

r

λR

)
cosωt . (19)

The envelops of the surface waves, which are constituted by
two curves of Eq. (19) at ωt=0 and ωt=π, are plotted in Fig. 4 with
a  few  curves  in  between.  Different  from  the  surface  waves  in
Cartesian  coordinates,  the  axisymmetric  surface  waves  decay
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Fig. 2.   Displacement ur vs. the normalized coordinate r/λR and z/λR.
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along  the  radial  direction  with  Bessel  functions.  Furthermore,
the orbit  of  a  particle  on the surface,  which can be obtained by
eliminating time in Eq. (19), is

ur = k (r, z)uz , (20)

cosωt
where k is  a  function  of r and z.  With  the  time  factor  through

, the trajectory of the particle on the surface is no longer a
perfect  ellipse,  showing  a  notable  difference  between  the  two
types  of  surface  waves.  Each  particle  now  moves  from  one
endpoint  to  another  endpoint  and  then  back  to  the  original
endpoint again along the line at different time, as shown in Fig.
4.  We  now  calculate  the  displacements  along  the  depth  at
r/λR=5/4, resulting equation (18) reduced to

ur =
[

e− 2πα
ξ

z
λR − 1+ (

β/ξ
)2

2
e− 2πβ

ξ
z
λR

]
J1

(
5

2
π

)
cosωt ,

uz =
[
−α

ξ
e− 2πα

ξ
z
λR + 1+ (

β/ξ
)2

2β/ξ
e− 2πβ

ξ
z
λR

]
J0

(
5

2
π

)
cosωt . (21)

To compare  the  results  with  a  similar  case  in  Cartesian  co-
ordinates,  normalized  displacements  with  two  Poisson's  ratios
ν=0.25 and ν=0.34 are plotted in Fig. 5. It is the same as shown by
Graff [14], indicating that the displacements along the depth are
the  same  for  two  types  of  surface  waves.  The  displacement
modes of the surface waves along the depth are shown in Fig. 6
with  different  time,  and  the  displacements  decaying  along  the
depth signify the feature of surface acoustic waves. However, the

particle  orbit  of  the  axisymmetric  surface  waves  is  still  a  line,

which again differs from the surface waves in Cartesian coordin-

ates.

f (ξ (r − ct ))

Finally, we studied the axisymmetric surface waves in the far

field. Strictly speaking, the wave velocity can be defined only by

the  function  in  the  form  of .  We  can  see  clearly  that

displacements in Eq. (18) do not satisfy this condition. However,

for  the  large  radius r,  Bessel  functions  can  be  expressed  in  the

following asymptotic form

J1 (x) =
√

2

πx
sin

(
x − π

4

)
,

J0 (x) =
√

2

πx
cos

(
x − π

4

)
. (22)

With this, we have

ur = a (z)sin
(
ξr − π

4

)
cosωt ,

uz = b (z)cos
(
ξr − π

4

)
cosωt , (23)

where
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Fig. 3.   Displacement uz vs. the normalized coordinate r/λR and z/λR.
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Fig. 4.   The total displacement of surface waves at z=0 and the orbit
of particles.
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Fig. 5.   Normalized displacements along the direction of depth.
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a (z) =−Aξ

√
2

πξr

[
e− 2πα

ξ
z
λR − 1+ (

β/ξ
)2

2
e− 2πβ

ξ
z
λR

]
,

b (z) = Aξ

√
2

πξr

[
−α

ξ
e− 2πα

ξ
z
λR + 1+ (

β/ξ
)2

2β/ξ
e− 2πβ

ξ
z
λR

]
. (24)

Using the  basic  identities  of  trigonometric  functions,  equa-
tion (18) become

ur = a (z)
[

sin
(
ξr − π

4
+ωt

)
+ sin

(
ξr − π

4
−ωt

)]
,

uz = b (z)
[

cos
(
ξr − π

4
+ωt

)
+cos

(
ξr − π

4
−ωt

)]
, (25)

f (ξ (r − ct ))

c =ω/ξ

1/(2πr )

which  are  in  the  waveform  of  and  are  the
superposition  of  one  forward  travelling  wave  with  the  one
backward  traveling  wave  with  the  wave  velocity .
Therefore,  the  axisymmetric  surface  waves  exhibit  the  property
of  travelling  waves.  Furthermore,  the  displacements  in  the  far
field exhibit a r-1/2 decaying, while it is an invariant in Cartesian
coordinates.  In  fact,  it  can be explained from the density  of  the
energy.  When  the  axisymmetric  surface  waves  travel  from  the
source, the energy is distributed on the cylindrical surface where
each  finite  area  possesses  the  energy  proportional  to .
Because  displacements  are  proportional  to  the  square  root  of
energy, the displacements are proportional to r-1/2 naturally. For
a  large  radius,  the  axisymmetric  surface  waves  can  be
considered  as  planar  surface  waves  in  a  small  range.  This
explains  that  we  can  use  planar  surface  waves  to  approximate
the axisymmetric surface waves in far field.

In  summary,  governing  equations  of  axisymmetric  surface
waves were established by introducing two potential functions in
cylindrical coordinates.  Using the method of  separation of  vari-
ables,  the  equations  were  solved  with  traction-free  surface
boundary  conditions.  We  have  obtained  the  algebraic  equation
of  the  wave  velocity  which  is  same  as  that  of  Rayleigh  waves  in
Cartesian coordinates.  The  displacements  functions  of  axisym-
metric  surface waves were also obtained and the properties  are
examined.  The  displacements  exhibit  the  exponential  decaying
along  the  depth  as  they  are  in  Cartesian  coordinates.  However,
the displacements of axisymmetric SAW also decay along the ra-
dius, implying the dilution of energy in the propagation. Further-
more,  orbits  of  particles  of  axisymmetric  surface  waves  are
straight lines, which notably differ from the ellipses in Cartesian
coordinates.  Finally,  the axisymmetric surface waves in far  field
were  examined,  which  are  the  superposition  of  two  travelling
waves propagatng  in  opposite  directions.  Moreover,  the  dis-
placements along radius are proportional to r-1/2 in far field be-
cause  of  the  increasing  of  the  area  of  the  wavefront  and  the
axisymmetric surface waves are planar surface waves in far-field
approximately.
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