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A systematic method of searching novel cuts of quartz crystal is proposed to explain the discovery of the existing cuts 
including AT- and SC-cut, and a few popular cuts in products on market. It is also found that some curves on which the 
cuts have the same frequency-temperature relation as that of the AT- and SC-cut quartz resonators and the inflection 
temperature cover a quite wide range. Finally, using this method, we found a novel cut whose frequency-temperature 
relation is much better than the AT- and SC-cut quartz crystal resonators. The temperature range that the absolute value of 
frequency shifts is smaller than  for this novel cut from  to  and the frequency constant is 35% 
higher than the AT-cut resonator. 
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1. INTRODUCTION 

Quartz belongs to anisotropic crystals, so quartz crystal 
resonators whose core components are plates perform 
differently when the plates are cut in different 
orientations. As a result, we can find some special 
orientations that resonators show useful properties such 
as temperature insensitivity. From the invention of 
resonators up to now, many cuts have been found and 
utilized commercially such as AT- and SC-cuts. The 
complete list of the cuts can be found in reference books 
and web sources.  

Since names of most cuts are related to temperature, 
temperature is the most important factor that determines 
the quality of quartz resonator. For the quartz resonator 
that is used in timing and frequency control, the vibration 
frequency of resonator is expected to be insensitive with 
the temperature variation. For the quartz resonator that is 
used as a temperature sensor, linear frequency- 
temperature relation is always better.  

Although great achievements have been made by 
efforts of pioneers, following questions from product 
development engineers are to be answered: 
1) Can we explain the existing cuts systematically? 
2) Can we find other cuts with frequency-temperature 
behavior better than the known AT- and SC-cut? 

3) Can we find cuts whose frequency-temperature 
behavior is more stable than AT- and SC-cut? 

2. METHODS 

2.1. Frequency-temperature relations 

The vibration frequency of a resonator shifts when the 
environment temperature varies. The relation of a cut 
whose rotation angles are denoted as  
according to the standard IRE 49[1] can be described by 
a function of frequency shift  vs. temperature  
[2] 
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where  is the th-order frequency-temperature 
coefficients and  is the reference temperature. Only 
the first three terms of Taylor series are retained because 
the frequency-temperature relation is cubic in 
experiment. 

Generally, a function  can be derived 
for a special vibration mode such as the flexural, 
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thickness-shear, face-shear mode, and others [3]. For 
example, the derivation of  of 
thickness-shear mode of an infinite plate with the 
incremental thermal field theory can be found in an early 
paper [4]. 

If the function  is known, then the 
first three frequency-temperature coefficients can be 
obtained by the finite differential methods [5]. 

The thermal elastic constants and thermal expansion 
coefficients are needed to calculate the 
frequency-temperature relation. Since they are correct 
only in certain temperature range, we need to determine 
which range of temperature are reliable for the analysis. 
The physical constants used here are from Lee et al. [6] 
who used the data measured by Mason [7], Bechmann 
[2], Adams [8], and Kahan et al. [9]. The range of 
temperature measured by Mason, Bechmann, and Adams 
are , , 

 respectively, and it’s not shown by 

Kahan. Strictly speaking, the range of temperature 
should not exceed  according to the 
experiment, but the physical constants do not deviate 
much beyond the phase transition between - and 

-quartz at . Furthermore, Patel extended the 
temperature to  when he was estimating the Q 
factor [10]. Thus, temperature is mapped into 

 in this study. 

3. RESULTS 

The existing cuts can be confirmed by solving the 
equations of the first third-order frequency-temperature 
coefficients of flexural, longitudinal, thickness-shear and 
face-shear mode in singly-, doubly- and triply-rotated 
quartz. According to different orientation, we discuss the 
following cases.  
Case 1 

 � �(1) 0 , ,0 ,25 0,fT �
 
 �  (2) 

where  is the singly-rotated angle . The roots 
of the Eq. (2) are denoted as , and the 
frequency-temperature relation at  is  

 

(3) 

 

Because of the Taylor expansion,  is always 
smaller than  near the reference temperature , 

and the frequency-temperature often show the parabolic 
form. 

With this idea and solving the Eq. (2) of different 
vibration modes of singly-rotated quartz, the AT-, BT- 
[11], RT- [2], AK-cut [12] of quartz crystal resonators of 
thickness-shear mode, CT- and DT- cuts [13] of 
face-shear mode, NT-cut [14] of flexural mode, ET- and 
FT- cuts [13] probably of second flexural mode, GT- and 
MT- cuts [13,14] of longitudinal mode are found.  
Case 2 

 (4) 

where  are the doubly-rotated angles . 
There are two variables and one equation, so the roots 

 of the Eq. (2) are on curves and the corresponding 
cuts have parabolic frequency-temperature relations. 
These curves of B and C mode of thickness vibrations 
were first derived in the Fig. 2 of Bechmann’s paper in 

1962 [2]. The curve of C mode is also the BBLC1 in 
Figure 4 below. 
Case 3 

 (5) 

 Different from Eq. (4),  and  are 
functions  

 
Figure1. Orientations with frequency-temperature 

relations exhibit ideal cubic function. 

CCC1-4 means the first, second, third 

and fourth curve of cubic 

frequency-temperature function of C 

mode. CCB1 means the first curve of 

cubic frequency-temperature function of 

B mode. 

of the reference temperature . It means that the 
reference temperature  is determined by solving the 
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Eq. (3). The roots are denoted as , which means 
that the quartz resonators of doubly-rotated cuts  
have the frequency-temperature relation 

 (6) 

This frequency-temperature relation is the same as 
that of AT-, FC-, IT- and SC-cut [15] whose rotation 
angles and inflection temperature are listed in Table 1, 
and we found the angles and inflection of these cuts are 
all on the curves of  in Fig. 1.  

Table 1. Orientations and inflection temperature of AT-, FC-, IT-, SC  

       and BTT-cut 

Cuts    

AT-cut 0 35.25 25 

FC-cut 15 34.33 50 

IT-cut 19.1 34.08 75 

SC-cut 21.93 33.93 95 

BTT-cut [16] 0 -51.993 -100 

Case 4 

We can also consider the stress function  [17] 
between the electrode and the crystal plate. By solving 
the equations 

 (7) 

of C mode, EerNisse [18,19] found the SC-cut resonator 
first. In fact, according to the Eq. (3), the frequency- 
temperature relation is parabolic while it is ideally cubic 
in commercial applications. Strictly speaking, the SC-cut 
should be found from curves of stress equation and of Eq. 
(5). However, since the curve of roots of the Eq. (2) of C 
mode is very close to the curve of roots of Eq. (5) of C 
mode in Fig. 2, Kuster [20] found SC-cut with ideal 
cubic frequency-temperature relation near the initial 
result of EerNisse experimentally. 

 

 

Figure 2. Optimal cuts of quartz crystal with cubic 

frequency-temperature relation. The 

solid line is the solution of Eq. (5) and 

the dash line is the solution of Eq. (4).  

In addition, solving the stress equation of B mode and 
first frequency temperature coefficients equation of C 
mode, Valdios obtained the SBTC-cut [21] that have 
stress compensation of B mode and temperature 
compensation of C mode. 
Case 5 

 (8) 

If the second and third frequency-temperature 
coefficients are zeroes, the frequency-temperature 
relation of the corresponding roots  show the 
linear relation 

 (9) 

 Such cuts can be used for thermometers, and 
Hammond invented the LC-cut [22] quartz resonator 
based on this method. 
Case 6 

 (10) 

Nakazawa considered the stress equation and the 
equation of the second-order frequency-temperature 
coefficient. He found the NLSC-cut [23] whose angles 
are denoted as  for thermometer that is stress 
insensitive and has the frequency temperature relation 

 

(11) 

 

Although Eq. (3) contains the cubic term, the 
frequency-temperature relation is very close to the linear 
relation near  because the third-order temperature 
coefficient is much smaller than the first-order 
temperature coefficient. 
Case 7 
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 (12) 

We can consider the extreme case that all the first 
third-order temperature coefficients are zeroes so that the 
frequency-temperature relation is 

 (13) 

which means the frequency of a resonator does not vary 
when the environment temperature changes. Obviously, 
it is the cut with best frequency-temperature relation. 

The solution of Eq. (12) can be transformed to 
search minimum of objective function 

 (14) 

Then check if the Eq. (12) is satisfied. 
Unfortunately, we cannot find any cut with Eq. (13). 

However, if  is smaller than a small tolerance we can 
think of, the minimum is the root of Eq. (6) strictly. If  
is smaller than a small tolerance, we can find the 
frequency-temperature relation varies very slow too.  

With this approach, we found a cut whose 
frequency-temperature relation is much flatter than that 
of AT- and S-cut as shown in Fig. 3. This cut is a 
triply-rotated cut, and its vibration mode is B mode of 
thickness-shear. The frequency constant is  higher 
than AT-cut. The inflection temperature is , and the 
range that the absolute value of frequency shift is smaller 
than  is from  to .  

Figure 3.  Frequency-temperature relation of novel     

         cut, AT-cut and SC-cut. 

4. CONCLUSIONS 

A systematic method is presented to explain the 
discovery of the existing cuts of quartz crystal. We have 
found more cuts with the same or superior 

frequency-temperature relation of AT- and SC-cut. 
Finally, we suggested a novel cut that have a much stable 
frequency-temperature behavior with great potential in 
devices that work in a wide range of temperature.  
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