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The scalar differential equation in the thickness eigendisplacement for the doubly-rotated quartz

plates is applied to analyze thickness vibrations of an unelectroded circular plate with free edges at

the neighborhood of the pure thickness vibration mode. The scalar differential equation is trans-

formed into an elliptical coordinate system. With the boundary conditions of free edges, the frequen-

cies and the modes are solved in terms of the Mathieu function and the Modified Mathieu function.

The results of frequencies of the fundamental harmonic and its third overtone of an AT-cut quartz

circular plate by the present approach agree well with the existing theoretical results and the experi-

ment results. The frequencies and modes of an SC-cut quartz circular plate are investigated by the

present approach. The frequencies are close to each other when the order of the harmonics is the

same. A rotation angle of the symmetric axes of the vibration modes are observed that is dependent

on the anisotropic material constants and the order of the harmonics. This approach has potential

applications in the design of the doubly-rotated quartz circular resonators.
VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5050609
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I. INTRODUCTION

Nowadays, crystal resonators are widely spread in elec-

trical equipment, since they perform well in applications in

frequency control, time keeping, sensing, telecommunica-

tion, and so on. Among piezoelectric crystals, quartz crystal

is the most popular one in the industry due to its high quality

and low cost. Usually the key element of the quartz resona-

tors is the quartz plate, mainly operating in the thickness

vibration mode (Koga, 1932; Tiersten, 1963). The common

shapes of quartz plates are rectangular and circular. The

analysis of the finite quartz plate by using the three-

dimensional theory of linear elasticity or piezoelectricity is

complicated because of anisotropy and the piezoelectric cou-

pling of the quartz crystal.

Much effort has been made to seek for an efficient

method for the analysis of the vibrations of crystal plates.

Mindlin (1951a) proposed a two-dimensional plate theory

considering the effect of rotatory inertia and shear and

applied to analyze the vibrations of crystal plates (Mindlin,

1951b; Mindlin and Deresiewicz, 1954). This theory is

known as the first-order shear deformation plate theory and

is thus suitable for the low-order thickness-shear vibration of

crystal plates. Later, a high-order two-dimensional plate the-

ory was proposed (Mindlin, 1961). Following Mindlin’s

work, extensive analyses of the vibration of the crystal plates

have been made, among which the recent work by Wang and

Yang (2000), Wang and Zhao (2005), and Zhang et al.
(2009) should be mentioned. Lee and Nikodem (1972) pro-

posed another two-dimensional plate theory by a series

expansion in terms of pure thickness modes for infinite

plates, which were in the trigonometric function form.

Because of the orthogonality of the trigonometric functions

and the simplicity for the derivatives, no increase in compli-

cation arose in the approximation of higher order vibration

modes. Tiersten and Smythe (1979) constructed a single sca-

lar differential equation with some simplifying assumptions

for the analysis of the rotated Y-cut quartz resonators. The

numerical calculation was presented for the contoured AT-

cut quartz resonators. Similarly, an alternative single scalar

differential equation was advised by Stevens and Tiersten

(1986) for the doubly-rotated, including the SC-cut

(Eernisse, 1975, 1976), quartz resonators.

On the analysis of the thickness-shear vibration modes

of the circular quartz crystal plate, Mindlin and Deresiewicz

(1954) solved the thickness vibrations of isotropic, elastic

plates of a circular shape with free edges by using the first-

order shear deformation plate theory, and applied the solu-

tion to approximate the frequency spectrum of an AT-cut

quartz plate of the circular shape with the help of a proper

value of Poisson’s ratio �¼ 0.312. By using the single scalar

differential equation, Tiersten and Smythe (1985) solved the

vibration of the AT-cut quartz crystal plates of the rectangu-

lar shape. For the circular plate, a perturbation procedure

was applied to solve the vibration of the AT-cut quartz

plates. For the SC-cut quartz crystal, Stevens and Tiersten

(1986) applied the alternative scalar differential equation to

analyze the vibrations of plates with rectangular electrodes

and contoured plates. Due to the complexity of the theoreti-

cal analysis, some researchers used numerical approaches,

for example, the works by Yong et al. (1992), Wang et al.
(2009), and Liu et al. (2015). Very recently, He et al. (2013)a)Electronic mail: wangji@nbu.edu.cn
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improved the analysis of thickness vibrations of the unelec-

troded AT-cut quartz plates of the circular shape by finding

the Mathieu function solutions of the scalar differential

equation for the rotated Y-cut quartz plates. Based on the

variational form of the scalar differential equation, the Ritz

method was used to analyze the vibration of quartz plates in

different cases by Shi et al. (2014, 2015a,b, 2016a,b). In vir-

tue of the scalar differential equation for the unelectroded

and electroded AT-cut quart plates, Zhao et al. (2015a,b,

2017) analyzed the vibration of AT-cut quartz rectangular

plates with electrode pairs. Wang et al. (2017) used the sca-

lar differential equation by Tiersten and Smythe (1985) to

analyze the vibrations of partially-electroded quartz circular

plates.

In the present analysis, based on the scalar differential

equation in the thickness eigendisplacement proposed by

Stevens and Tiersten (1986), the vibration frequencies and

modes of a doubly-rotated quartz plate at the neighborhood

of the pure thickness vibration mode are investigated. The

solution of the scalar differential equation for a doubly-

rotated quartz plate with free edges is presented in terms of

the Mathieu function and the modified Mathieu function.

The present method is verified by the comparison with the

frequencies of the fundamental thickness vibration mode and

the third overtone of an AT-cut quartz circular plate with

available experimental and theoretical results. Since the pre-

sent approach is generally applicable for the doubly-rotated

quartz plates, the frequencies and modes in the vicinity of

the pure thickness vibration of an SC-cut quartz circular

plate are investigated.

II. BASIC EQUATIONS

The conventional components of displacement ûi ði ¼ 1;
2; 3Þ are transformed into a space spanned by the normalized

eigenvectors of the piezoelectrically stiffened elastic con-

stant matrix, i.e., Eq. (A8). When it is the pure thickness

vibration, only one of three components of the displacement

in the transformed space, e.g., u1, exists. Under the assump-

tion that the so called thickness eigendisplacement, u1, is

dominant, as well as the usual assumptions of small wave-

numbers along the plate and small piezoelectric coupling,

Stevens and Tiersten (1986) proposed a single scalar differ-

ential equation for the vibrations in the vicinity of the pure

thickness modes.

Since the thickness-shear modes are of the main interest

for quartz resonator, the thickness eigendisplacement is

expressed in the odd harmonic form as

u1¼
X1

n¼1;3;5

u
ðnÞ
1 ¼

X1
n¼1;3;5

~u
ðnÞ
1 ðx1;x3; tÞsinðnpx2=2hÞ; (1)

where u1 is the dominant thickness eigendisplacement in the

unelectroded quartz plate, u
ðnÞ
1 is the asymptotic solution

function for the u1 displacement for the nth odd harmonic,

and ~u
ðnÞ
1 governs the mode shapes along the surface of the

unelectroded plate. The homogeneous differential equation

proposed by Stevens and Tiersten (1986) is given by

M0n
@2~u

nð Þ
1

@x021
þP0n

@2~u
nð Þ

1

@x023
� n2p2�c 1ð Þ

4h2
~u

nð Þ
1 � q€~u1 nð Þ ¼ 0; (2)

where the coordinates x0i are rotated from the conventional

coordinates xi, and the detailed expressions for the variables

and parameters are listed in the Appendix.

When M0n > P0n, we set

x01 ¼ kc sinh n sin g; x03 ¼ lc cosh n cos g; (3)

where

k ¼ 1

x0

ffiffiffiffiffiffiffi
M0n
q

s
; l ¼ 1

x0

ffiffiffiffiffi
P0n
q

s
: (4)

When M0n < P0n, we set

x03 ¼ kc sinh n sin g; x01 ¼ lc cosh n cos g; (5)

where

k ¼ 1

x0

ffiffiffiffiffi
P0n
q

s
; l ¼ 1

x0

ffiffiffiffiffiffiffi
M0n
q

s
: (6)

In both cases, we have

x0 ¼
np
2h

ffiffiffiffiffiffiffi
�c 1ð Þ

q

s
; c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

l2
� R2

k2

s
: (7)

Under the above transformation and the ignoring of the har-

monic time factor, the differential equation, i.e., Eq. (2), for

a circular plate in the thickness eigendisplacement ~u
ðnÞ
1

becomes a differential equation in the elliptical coordinate

system (n, g) taking the following form:

@2~u
nð Þ

1

@n2
þ @

2~u
nð Þ

1

@g2
þ 2q cosh 2n� cos 2g½ �~u nð Þ

1 ¼ 0; (8)

where

q ¼ c2

4

x2

x2
0

� 1

 !
: (9)

The circular boundary in the Cartesian coordinates

(x1, x3) or ðx01; x03Þ, i.e., x2
1 þ x2

3 ¼ x021 þ x023 ¼ R2, becomes

the boundary in the elliptical coordinates given by n¼ n0,

where R is the radius of the circular, and n0 satisfies

tanh n0 ¼
l
k
: (10)

Furthermore, in virtue of the standard method of the

separation of variables, i.e.,

~u
ðnÞ
1 ðn; gÞ ¼ UðnÞVðgÞ: (11)

Equation (8) yields

d2V gð Þ
dg2

þ a� 2q cos 2gð ÞV gð Þ ¼ 0; (12)
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d2U nð Þ
dn2

þ 2q cosh 2n� að ÞU nð Þ ¼ 0: (13)

The differential equation, Eq. (8), yields two related one-

dimensional differential equations; Eq. (12) is the Mathieu

equation, and Eq. (13) is the modified Mathieu equation.

Given q, the Mathieu equation, Eq. (12), has infinitely

many solutions with period p or period 2p. The solutions are

the Mathieu cosine cem(g, q) and the Mathieu sine sem(g, q).

Every solution is determined by a specific value of a,

referred to as a characteristic value, which might be denoted

as am for the Mathieu cosine cem(g, q), and bm for the

Mathieu sine sem(g, q). For fixed q and am or bm, the modi-

fied Mathieu equation has solutions denoted by Cem(n, q) or

Sem(n, q), which satisfy (McLachlan, 1947)

Cemðn;qÞ¼ cemðin;qÞ; Semðn;qÞ¼�isemðin;qÞ;

i¼
ffiffiffiffiffiffiffi
�1
p

:
(14)

The vibration modes at a specific frequency might be

characterized by

Cemðn; qÞcemðg; qÞ; Semðn; qÞsemðg; qÞ: (15)

Therefore, the general solution ~u
ðnÞ
1 of the differential Eq. (8)

is obtained as

~u
ðnÞ
1 ¼

X1
m¼0

CmCemðn; qÞcemðg; qÞ

þ
X1
m¼1

SmSemðn; qÞsemðg; qÞ; (16)

where Cm and Sm are undetermined constants.

As in previous works (Tiersten and Smythe, 1985; He

et al., 2013), the boundary condition is given by

~u
ðnÞ
1 ¼ 0: (17)

Since the boundary is at n¼ n0, we have

X1
m¼0

CmCemðn0; qÞcemðg; qÞ

þ
X1
m¼1

SmSemðn0; qÞsemðg; qÞ ¼ 0: (18)

With the orthogonal relations of the Mathieu cosine cem(g,

q) and the Mathieu sine sem(g, q) (Arfken et al., 2012), i.e.ð2p

0

cemcendg ¼
ð2p

0

semsendg ¼ 0; m 6¼ n;ð2p

0

cemsendg ¼ 0; (19)

the multiplication of Eq. (18) with the Mathieu cosine cei(g,

q) or the Mathieu sine sei(g, q) followed by the integration in

g from 0 to 2p leads to the equations for the determination of

the values of q on the boundary, i.e.,

Cemðn0; qÞ ¼ 0;m ¼ 0; 1;…;

or Semðn0; qÞ ¼ 0; m ¼ 1; 2;…: (20)

Every equation in Eq. (20) has many roots, which leads to

infinitely many values of q. Every value of q determines a

frequency, according to Eq. (9), whose alternative form is

the frequency equation given by

x
x�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an

h2

R2
þ n2

r
; (21)

where

an ¼
16qM0nP0n

p2�c 1ð ÞjP0n �M0nj
; (22)

and x* is the value of x0 when n¼ 1.

III. NUMERICAL EXAMPLES

The formulae in the above section are generally applica-

ble for the doubly-rotated case. They are implemented in the

software MATHEMATICA, which has the built-in Mathieu func-

tions. In the following calculations, the thickness eigendis-

placement u1 is properly chosen to represent the C mode in

the pure thickness vibration, since the main interest is of the

vibrations at the neighborhood of the C mode. If the interest

is of the vibrations at the neighborhood of the B mode, the

thickness eigendisplacement u1 should be chosen to repre-

sent the B mode in the pure thickness vibration.

The correctness of these formulae is confirmed by the

numerical results of the fundamental frequency when n¼ 1

and its third overtone when n¼ 3 of a AT-cut quartz circular

plate. The results of the present method are 15.0798 MHz and

45.2103 MHz, respectively, which are of high accuracy com-

pared with the values given by the experiments and theoretical

predictions (Tiersten and Smythe, 1985; He et al., 2013). The

material constants of the AT-cut quartz crystal are obtained by

rotating the intrinsic coordinates of the quartz crystal about the

x axis by angle h¼ 35.25�. The material constants of the

quartz crystal in the intrinsic coordinate system were given by

Bechmann (1958). Following the configuration given by

Tiersten and Smythe (1985), the circular plate has a diameter

of 2R¼ 7.874 mm and a thickness of 2h¼ 0.110236 mm.

The slight difference between the values of frequencies

calculated by the present method and by He et al. (2013)

mainly comes from the truncation errors of the material con-

stants. When the specific material constants for the AT-cut

quart crystal (Tiersten, 1969) are used in the present method,

the frequencies of the fundamental mode and its third over-

tone of an AT-cut quartz circular plate are 15.079091 MHz

and 45.208327 MHz, respectively. The remaining difference

might come from the difference in the parameter Mn and Pn

for different cases. When the scalar differential equation for

the doubly-rotated quartz plates (Stevens and Tiersten, 1986)

is specific for the AT-cut quartz plate, the values of parame-

ters Qn are consistent with the values in the scalar differen-

tial equation for the AT-cut quartz plates (Tiersten and

Smythe, 1985), i.e., Qn¼ 0, but the values of the parameters
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TABLE I. The frequencies of the SC-cut quartz circular plate with a diameter of 2R¼ 7.874 mm and a thickness of 2h¼ 0.110236 mm (R/h¼ 71.429) at the

neighborhood of the frequencies of the pure thickness vibration mode.

Cem (MHz) Sem (MHz)

0 1 2 3 1 2 3 4

n¼ 1 16.3173 16.3274 16.3420 16.3610 16.3330 16.3471 16.3651 16.3869

16.3583 16.3776 16.4013 16.4299 16.3925 16.4166 16.4448 16.4772

16.4358 16.4647 16.4977 16.5349 16.4879 16.5216 16.5594 16.6012

n¼ 3 48.9288 48.9318 48.9361 48.9415 48.9323 48.9364 48.9415 48.9477

48.9381 48.9442 48.9519 48.9610 48.9457 48.9530 48.9616 48.9714

48.9554 48.9643 48.9749 48.9872 48.9671 48.9773 48.9890 49.0021

FIG. 1. (Color online) Frequency spec-

trum of an SC-cut quartz circular plate

by finding the first roots of Cem¼ 0

and Sem¼ 0 when n¼ 1, 3.

FIG. 2. (Color online) The modes of Cemcem at

the first frequencies given by Cem¼ 0 when

n¼ 1 for different values of m: (a) m¼ 0, (b)

m¼ 1, (c) m¼ 2, (d) m¼ 3.
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Mn and Pn are slightly different. The expressions of Mn,

Qn, and Pn for the doubly-rotated quartz plates are given by

Eq. (A2).

In the following numerical examples, the SC-cut quartz

circular plate is chosen. The material constants of the SC-cut

quartz crystal are obtained by rotating the intrinsic coordinates

of the quartz crystal about the z axis by angle /¼ 21.93� and

then about the new x axis by angle h¼ 33.93�.

A. Frequencies of the vibrations

Once the boundary value of n0 is determined by Eq.

(10), more than one value of q for the fixed value of m is

obtained as a solution of Eq. (20), and then more than one

frequency x/2p is calculated by Eq. (9). The frequencies of

vibrations of the SC-cut quartz circular plate, corresponding

to the first three roots of Eq. (20), are listed in Table I. The

values of the frequencies at the nth row are related with the

nth roots of Eq. (20). They are very close to each other when

n is the same, and are around the value of x0/2p calculated

by Eq. (7), which is 16.3439 MHz when n¼ 1 and

49.0316 MHz when n¼ 3. According to Eq. (21), the fre-

quency becomes infinite when the ratio of diameter to thick-

ness R/h approaches zero, and becomes a constant when the

ratio approaches infinite. The relation between the normal-

ized frequency corresponding to the first root of Eq. (20) and

the ratio of diameter to thickness is shown in Fig. 1 for dif-

ferent n and m.

B. Vibration modes

In the present analysis, the vibration of the quartz circu-

lar plate in the vicinity of the odd pure thickness frequency

is described by the thickness eigendisplacement u1, and the

vibration modes might be represented by Cemcem and

Semsem in Eq. (15) with the corresponding frequencies calcu-

lated by the boundary condition in Eq. (20).

Figures 2–5 are contours of the modes of Cemcem and

Semsem when n¼ 1. The value is larger at lighter shading

and lower at darker shading. A small angle between the sym-

metry axes of the vibrations and the coordinates is observed,

which is equal to the value of b̂n defined by Eq. (A5). The

value of b̂n when n¼ 1 is �1.66�. The angle is related to the

anisotropy property of quartz crystal and the value of n. The

symmetry axes might be denoted as x01 and x03, respectively.

Figure 2 shows the Cemcem modes of the vibrations of the

quartz circular plate when n¼ 1. The Cemcem mode is sym-

metric about both the x03 and x01 axes when n¼ 1, m¼ 0, 2,

but symmetric about the x03 axis and antisymmetric about the

x01 axis when n¼ 1, m¼ 1, 3. Figure 3 shows that the Semsem

modes when n¼ 1 are antisymmetric about the axis x03 and

symmetric about the axis x01 when m¼ 1, 3, but antisymmet-

ric about both the x03 and x01 axes when m¼ 2, 4. By using the

FIG. 3. (Color online) The modes of Semsem

at the first frequencies given by Sem¼ 0

when n¼ 1 for different values of m: (a)

m¼ 1, (b) m¼ 2, (c) m¼ 3, (d) m¼ 4.

818 J. Acoust. Soc. Am. 144 (2), August 2018 Xie et al.



FIG. 4. (Color online) The modes of

Cemcem at the second frequencies

given by Cem¼ 0 when n¼ 1 for dif-

ferent values of m: (a) m¼ 0, (b)

m¼ 1, (c) m¼ 2, (d) m¼ 3.

FIG. 5. (Color online) The modes of

Semsem at the second frequencies given

by Sem¼ 0 when n¼ 1 for different

values of m: (a) m¼ 1, (b) m¼ 2, (c)

m¼ 3, (d) m¼ 4.
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present method, the Cemcem and Semsem modes of vibration

of the quartz circular plate when n¼ 3 are quite similar with

those when n¼ 1, but the rotation angle b̂n, which is depen-

dent on the material constants and the value of n, is much

larger. Figures 4 and 5 are the vibration modes of the quartz

circular plate at the second frequencies when n¼ 1, which

are modes of higher order.

IV. CONCLUSIONS

The scalar differential equation in the thickness eigen-

displacement proposed by Stevens and Tiersten (1986) is

used to analyze the vibration of a circular plate of the

doubly-rotated quartz crystal with free edges in the vicinity

of the thickness vibration mode. The correctness of the for-

mulation is confirmed by the numerical results of the fre-

quencies of the fundamental mode and its third overtone of

an AT-cut quartz circular plate. The frequencies and modes

of an SC-cut quartz circular plate at the neighborhood of the

pure thickness vibration mode are presented. The results are

helpful in the design of SC-cut quartz crystal resonators. The

newly proposed approach is applicable for the analysis of

the vibration of a doubly-rotated quartz circular plate in

general.
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APPENDIX: VARIABLES AND PARAMETERS FOR THE
SCALAR DIFFERENTIAL EQUATION

The parameters needed in the numerical calculation are

listed here for a self-documented reason; for more details,

readers are referred to the work by Stevens and Tiersten

(1986).

The variables M0n and P0n in Eq. (2) are given by

M0n ¼ Mn cos2b̂n � Qn sin b̂n cos b̂n þ Pn sin2b̂n;

P0n ¼ Mn sin2b̂n þ Qn sin b̂n cos b̂n þ Pn cos2b̂n; (A1)

where

Mn ¼ c11 �
c2

16

�c 1ð Þ þ r2 c12 þ c66ð Þ þ r5 c17 þ c86ð Þ

þ 4 r2�c 1ð Þ � c66

� �
r2�c 2ð Þ þ c12

� �
�c 2ð Þj2np

cot j2

np
2

þ 4 r5�c 1ð Þ � c86

� �
r5�c 3ð Þ þ c17

� �
�c 3ð Þj3np

cot j3

np
2
;

Qn ¼ 2c51 �
2c16c56

�c 1ð Þ þ r2 c52 þ c76ð Þ þ r4 c12 þ c66ð Þ þ r3 c17 þ c86ð Þ þ r5 c36 þ c57ð Þ

þ 4
r2�c 1ð Þ � c66

� �
r4�c 2ð Þ þ c52

� �
þ r2�c 2ð Þ þ c12

� �
r4�c 1ð Þ � c76

� �
�c 2ð Þj2np

cot j2

np
2

þ 4
r5�c 1ð Þ � c86

� �
r3�c 3ð Þ þ c57

� �
þ r5�c 3ð Þ þ c17

� �
r3�c 1ð Þ � c36

� �
�c 3ð Þj3np

cot j3

np
2
;

Pn ¼ c58 �
c2

56

�c 1ð Þ þ r4 c52 þ c76ð Þ þ r3 c36 þ c57ð Þ

þ 4 r4�c 1ð Þ � c76

� �
r4�c 2ð Þ þ c52

� �
�c 2ð Þj2np

cot j2

np
2

þ 4 r3�c 1ð Þ � c36

� �
r3�c 3ð Þ þ c57

� �
�c 3ð Þj3np

cot j3

np
2
; (A2)

in which

r2 ¼
c12 þ c66

�c 1ð Þ � �c 2ð Þ ; r3 ¼
c36 þ c57

�c 1ð Þ � �c 3ð Þ ;

r4 ¼
c52 þ c76

�c 1ð Þ � �c 2ð Þ ; r5 ¼
c17 þ c86

�c 1ð Þ � �c 3ð Þ ; (A3)

j2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�cð1Þ=�cð2Þ

q
; j3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�cð1Þ=�cð3Þ

q
: (A4)

The new Cartesian coordinates are related to the conventional

Cartesian coordinates by the transformation x0i ¼ Rijxj, where

Rij ¼
cos b̂n 0 �sin b̂n

0 1 0

sin b̂n 0 cos b̂n

2
6664

3
7775;

b̂n ¼
1

2
tan�1 �Qn

Mn � Pn

� �
; (A5)

�cðiÞ ði ¼ 1; 2; 3Þ are the three real, positive roots of the cubic

equation

jĉ2nr2 � �cdnrj ¼ 0; (A6)

where
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ĉ2nr2 ¼ ĉ2nr2 þ ê22nê22r=�22; (A7)

or in the matrix form

ĉ66þ ê26ê26=�22 ĉ26þ ê22ê26=�22 ĉ46þ ê24ê26=�22

ĉ26þ ê22ê26=�22 ĉ22þ ê22ê22=�22 ĉ24þ ê22ê24=�22

ĉ46þ ê24ê26=�22 ĉ24þ ê22ê24=�22 ĉ44þ ê24ê24=�22

2
64

3
75:

(A8)

Note in our numerical calculation, �cð1Þ is of the minimum

value and ĉijkl; êmkl, and �ij are the elasticity tensor, piezo-

electricity tensor, and the dielectric tensor of the SC-cut

quartz crystal, respectively.

The parameters cij in Eq. (A2) are the contracted form
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