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Abstract—This study focused on the searching of new cuts 

for SAW substrates of triply-rotated quartz with cubic 

frequency-temperature (f-T) relationship by solving the 

equations of the first and second derivatives of the f-T function. 

First we established the f-T function of SAW, which was 

presented in matrix form and was based on the thermal 

incremental field theory. Next the wave velocity was obtained 

by the golden search method. Then the first two derivatives of 

the f-T function were calculated by multi-point finite difference 

formula. Finally, solving the nonlinear equations of the first 

two derivatives in the whole range of triply-rotated quartz, we 

obtained some new cuts with high inflection temperature 𝑻𝒊 

about 85℃.  
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I. INTRODUCTION  

For bulk acoustic wave (BAW) resonators, the 
frequency-temperature function of AT-cut quartz crystal is a 
cubic function while the BT-cut is parabolic function. Since 
the cubic f-T function is more stable, AT-cut is much more 
widely used in resonators than BT-cut although whose 
frequency constants are higher. Just like the BT-cut in BAW, 
the corresponding cut with parabolic function in surface 
acoustic wave resonators (SAW) is the ST-cut. However, 
crystal cuts like AT-cut with cubic f-T function are not found 
in SAW except 33°Y-cut which was fabricated with some 
special technology on electrodes [1]. A lot of efforts are 
made in finding the temperature insensitive cuts [2], but it 
seems that a systematic searching for triply-rotated quartz 
crystal without the consideration of electrodes have not been 
tried until now. 

In an earlier study [3], we introduced a general method 
by solving the equations of the first two derivatives of the f-T 
function to find optimal cuts with cubic f-T functions in 
BAW. Using this method in doubly-rotated quartz, we 
obtained some f-T curves that run through the existed cuts 
like AT-, FC-, IT-, SC- cuts and their inflection 
temperatures. Now we are extending this method to the 
triply-rotated quartz crystal for SAW resonators. 

II. AN DESCRIPTION OF METHODS 

A. Rotation angles in SAW 

In this study, we use the so-called “BAW angles” that 
can be expressed by standard IRE 49 [4] notation as  
(𝑦𝑥𝑤𝑙𝑤)𝜙, 𝜃,𝜓. It can be transformed into Eulerian angles 
(𝜆, 𝜇, 𝜃) easily which is familiar to SAW researchers [2].  

B. The method to find cuts with cubic f-T function 

The frequency 𝑓  is propotional to the surface wave 
velocity 𝑐 , and the 𝑐  can be calculated through the 
characteristic equation which is the function of rotation 

angles 𝜙, 𝜃,𝜓  and temperature 𝑇  of the quartz crystal 
substrate. So it is possible to obtain the function 
𝑓(𝜙, 𝜃, 𝜓, 𝑇)  in an implicit form that it can be only 
calculated numerically.  

We can expand 𝑓(𝜙, 𝜃, 𝜓, 𝑇)  vs. 𝑇  at reference 
temperature 𝑇0 as 

𝑓(𝜙, 𝜃, 𝜓, 𝑇) = 𝑓0(𝜙, 𝜃, 𝜓, 𝑇0) + 𝑓′(𝜙, 𝜃, 𝜓, 𝑇0) 

(1) (𝑇 − 𝑇0) + 𝑓′′(𝜙, 𝜃, 𝜓, 𝑇0)(𝑇 − 𝑇0)
2 + 

𝑓′′′(𝜙, 𝜃, 𝜓, 𝑇0)(𝑇 − 𝑇0)
3. 

The high-order terms are neglected since they are very 
small, and the first derivative are defined as 

𝑓′(𝜙, 𝜃, 𝜓, 𝑇0) =
𝜕𝑓

𝜕𝑇
|
𝑇=𝑇0

. (2) 

In fact, we are concerned with the relative shift of 

frequency 
Δ𝑓

𝑓
(𝜙, 𝜃, 𝜓, 𝑇) vs. the change of temperature 

(𝑇 − 𝑇0) as 

Δ𝑓

𝑓
(𝜙, 𝜃, 𝜓, 𝑇) = 𝑇𝑓

(1)(𝜙, 𝜃, 𝜓, 𝑇0)(𝑇 − 𝑇0) + 

(3) 𝑇𝑓
(2)(𝜙, 𝜃, 𝜓, 𝑇0)(𝑇 − 𝑇0)

2 + 

𝑇𝑓
(3)(𝜙, 𝜃, 𝜓, 𝑇0)(𝑇 − 𝑇0)

3, 

where 𝑇𝑓
(1)

,𝑇𝑓
(2)

, 𝑇𝑓
(3)

 are the first-, second- and third-order 

temperature coefficients of frequency respectively 

Δ𝑓

𝑓
(𝜙, 𝜃, 𝜓, 𝑇) =

𝑓(𝜙, 𝜃, 𝜓, 𝑇) − 𝑓0(𝜙, 𝜃, 𝜓, 𝑇0)

𝑓0(𝜙, 𝜃, 𝜓, 𝑇0)
, (4) 

𝑇𝑓
(1)(𝜙, 𝜃, 𝜓, 𝑇0) =

𝑓′(𝜙, 𝜃, 𝜓, 𝑇0)

𝑓0(𝜙, 𝜃, 𝜓, 𝑇0)
, (5) 

𝑇𝑓
(2)(𝜙, 𝜃, 𝜓, 𝑇0) =

𝑓′′(𝜙, 𝜃, 𝜓, 𝑇0)

𝑓0(𝜙, 𝜃, 𝜓, 𝑇0)
, (6) 

𝑇𝑓
(3)(𝜙, 𝜃, 𝜓, 𝑇0) =

𝑓′′′(𝜙, 𝜃, 𝜓, 𝑇0)

𝑓0(𝜙, 𝜃, 𝜓, 𝑇0)
. (7) 

In (3), we set 

{
𝑇𝑓

(1)(𝜙, 𝜃, 𝜓, 𝑇0) = 0

𝑇𝑓
(2)(𝜙, 𝜃, 𝜓, 𝑇0) = 0

. (8) 

The roots of (8) are denoted as (𝜙𝑖 , 𝜃𝑖 , 𝜓𝑖 , 𝑇𝑖) in earlier 
papers where 𝑖  denotes the inflection point whose second 
derivative is zero. However, it is saddle point since the first 
two derivatives are both zero actually.  

Then (3) becomes 
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Δ𝑓

𝑓
(𝜙𝑖 , 𝜃𝑖, 𝜓𝑖 , 𝑇) = 𝑇𝑓

(3)(𝜙𝑖 , 𝜃𝑖 , 𝜓𝑖 , 𝑇𝑖)(𝑇 − 𝑇𝑖)
3. (9) 

We call (9) the ideal cubic f-T function to distinguish it 

from a general cubic function. In (9), 𝑇𝑓
(3)(𝜙𝑖 , 𝜃𝑖, 𝜓𝑖 , 𝑇𝑖) is 

quite small, so (9) varies slowly with temperature near the 
inflection point which is used to be the reference temperature 
in practical applications. 

The cut (𝜙𝑖 , 𝜃𝑖 , 𝜓𝑖) we are searching for will have the 
ideal cubic f-T function if the reference temperature is the 
inflection point temperature 𝑇𝑖 . Furthermore, because there 
are four variables in two equations in (8), the roots 
(𝜙𝑖 , 𝜃𝑖 , 𝜓𝑖 , 𝑇𝑖)  cannot be independent and they constitute 
surfaces in a four-dimensional space. 

C. Frequency-temperature function of SAW  

The derivation of f-T function of SAW are based on the 
incremental thermal field theory of piezoelectricity, and the 
detailed derivation can be referred to the earlier papers [3, 5-
7]. Here we give the equations in the matrix form directly 
which can be rewritten from linear equations easily. 
Meanwhile, the third coordinate 𝑥3  in Fig.1 is neglected 
because of the feature of the propagation of surface waves. 

 

Fig. 1. The analytical model of a semi-infinite substrate 

 Firstly, we have the strain-displacement relation,  

𝑺 = 𝑨𝑩𝒖, (10) 

where 𝑺  and 𝒖  are tensors of strain and displacements 
respectively, and 

𝑺 = [𝑆1 𝑆2 𝑆4 𝑆5 𝑆6]
𝑇 , (11) 

𝒖 = [𝑢1 𝑢2 𝑢3]𝑇 , (12) 

𝑨 =

[
 
 
 
 
𝛽11 𝛽21 𝛽31 0 0 0
0 0 0 𝛽12 𝛽22 𝛽32

0 0 0 𝛽13 𝛽23 𝛽33

𝛽13 𝛽23 𝛽33 0 0 0

𝛽11 𝛽22 𝛽32 0 0 0 ]
 
 
 
 

, (13) 

𝑩 =

[
 
 
 
 
 
 
𝜕𝑥1

0 0

0 𝜕𝑥1
0

0 0 𝜕𝑥1

𝜕𝑥2
0 0

0 𝜕𝑥2
0

0 0 𝜕𝑥2]
 
 
 
 
 
 

, (14) 

where 𝛽𝑖𝑗 is the thermal expansion coefficients which can be 

found in Ref. [3], and 

𝜕𝑥1
=

𝜕

𝜕𝑥1
, 𝜕𝑥2

=
𝜕

𝜕𝑥2
. (15) 

Secondly,  the stress-strain relations are 

𝑻 = 𝑪𝑺, (16) 

𝑻𝑩 = 𝑭𝑺, (17) 

where 𝑻 and 𝑻𝑩 are the stress tensors, 

𝑻 = [𝑇1 𝑇2 𝑇4 𝑇5 𝑇6]
𝑇 , (18) 

𝑻𝑩 = [𝑇2 𝑇4 𝑇6]
𝑇 , (19) 

𝑪 =

[
 
 
 
 
𝐷11 𝐷12 𝐷13 𝐷14 𝐷15 𝐷16

𝐷21 𝐷22 𝐷23 𝐷24 𝐷25 𝐷26

𝐷41 𝐷42 𝐷43 𝐷44 𝐷45 𝐷46

𝐷51 𝐷52 𝐷53 𝐷45 𝐷55 𝐷56

𝐷61 𝐷62 𝐷63 𝐷64 𝐷65 𝐷66]
 
 
 
 

, (20) 

𝑭 = [

𝐷21 𝐷22 𝐷23 𝐷24 𝐷25 𝐷26

𝐷41 𝐷42 𝐷43 𝐷44 𝐷45 𝐷46

𝐷61 𝐷62 𝐷63 𝐷64 𝐷65 𝐷66

], (21) 

where 𝐷𝑖𝑗 is the thermal elastic constants which can be found 

in Ref. [3]. 

Thirdly, the equations of motion are 

𝜌�̈� = 𝑫𝑬𝑻, (22) 

where 𝜌 is the density, and 

𝑫 = [

𝛽11 𝛽12 𝛽13 𝛽13 𝛽12 𝛽11

𝛽21 𝛽22 𝛽23 𝛽23 𝛽22 𝛽21

𝛽31 𝛽32 𝛽33 𝛽33 𝛽32 𝛽31

], (23) 

𝑬 =

[
 
 
 
 
 
 
𝜕𝑥2

0 0 0 0

0 𝜕𝑥2
0 0 0

0 0 𝜕𝑥2
0 0

0 0 0 𝜕𝑥1
0

0 0 0 0 𝜕𝑥1

0 0 0 0 𝜕𝑥2]
 
 
 
 
 
 

. (24) 

Finally, substituting (10) and (16) into (22), we have 

𝜌�̈� = 𝑫𝑬𝑪𝑨𝑩𝒖. (25) 

The displacements function of surface waves are  

𝒖 = 𝒂𝑒−𝑘𝛼𝑥2𝑒i𝑘(𝑥1−𝑐𝑡), (26) 

where 𝑘 is the wavenumber, 𝛼 is the decaying index, 𝑐 is the 
wave velocity, and 𝒂 = [𝑎1 𝑎2 𝑎3]𝑇  is the vector of 
amplitudes. 

Substituting (26) into (25) and using the following 
transformation 

𝜕𝑥1
→ i, 𝜕𝑥2

→ −𝛼, (27) 

we have 

(𝑫𝑬𝑪𝑨𝑩 + 𝜌𝑐2𝑰)𝒂 = 𝟎, (28) 

where 𝑰 = diag(1,1,1). There are nontrivial solution of 𝒂 in 
(28) that is equivalent to 

det(𝑫𝑬𝑪𝑨𝑩 + 𝜌𝑐2𝑰) = 0. (29) 

The equivalent characteristic polynomial of 𝛼  always 
have three decaying roots whose real parts are positive [8]. 
Selecting those three roots and substituting them into (28), 
we have three eigenvectors 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 and they form a matrix 
𝒃 = [𝒂𝟏, 𝒂𝟐, 𝒂𝟑]. They can span a general solution, 



𝒖 = 𝑐1𝒂𝟏𝑒
−𝑘𝛼𝑥2𝑒i𝑘(𝑥1−𝑐𝑡) + 

(30) 
𝑐2𝒂𝟐𝑒

−𝑘𝛼𝑥2𝑒i𝑘(𝑥1−𝑐𝑡) + 𝑐3𝒂𝟑𝑒
−𝑘𝛼𝑥2𝑒i𝑘(𝑥1−𝑐𝑡). 

Substituting the general solution (30) into the boundary 
condition 

𝑻𝑩 = 𝑭𝑨𝑩𝒖 = 𝟎, 𝑥2 = 0, (31) 

Meanwhile, we define 𝑩𝟏 ,  𝑩𝟐 ,  𝑩𝟑  when 𝜕𝑥2
 in 𝑩  is 

substituted by 𝛼1, 𝛼2, 𝛼3 respectively. Finally, we have 

𝑻𝑩 = [𝑭𝑨𝑩𝟏𝒂𝟏 𝑭𝑨𝑩𝟐𝒂𝟐 𝑭𝑨𝑩𝟑𝒂𝟑] [

𝑐1

𝑐2

𝑐3

] = 𝟎, (32) 

or 

det([𝑭𝑨𝑩𝟏𝒂𝟏 𝑭𝑨𝑩𝟐𝒂𝟐 𝑭𝑨𝑩𝟑𝒂𝟑]) = 0. (33) 

The left handside in (33) is a function of (𝜙, 𝜃, 𝜓, 𝑇, 𝑐), 
and the solution can be expressed as 

𝑐 = 𝑐(𝜙, 𝜃, 𝜓, 𝑇), (34) 

and frequency 𝑓 is proportional to the wave velocity 𝑐, so we 
have the frequency-temperature function 

𝑓 = 𝑓(𝜙, 𝜃, 𝜓, 𝑇). (35) 

D. Numerical Examples  

The f-T function  𝑓(𝜙, 𝜃, 𝜓, 𝑇) is an implicit function by 
solving Eq. (33) that is in complex domain so it cannot be 
solved by using bisection method. However, it can be 
transformed to an absolute value equation 

|det([𝑭𝑨𝑩𝟏𝒂𝟏 𝑭𝑨𝑩𝟐𝒂𝟐 𝑭𝑨𝑩𝟑𝒂𝟑])| = 0 (36) 

 which can be  solved by golden  section search method. 

Eq. (8) are nonlinear equations, it can be transformed to 
an extreme problem and the local minimum can be found by 
the minimization method. When the local minimum are 
found, it is easy to check if the conditions are satisfied. 

 

Fig. 2. The first derivatives vs. singly-rotated angle of Y-cut quartz. The 
intersection is the ST-cut whose angle is 41.75℃ that smaller than 
42.75℃ [2, 9]. 

 

III. RESULTS & DISCUSSION 

With a formulation based on the frequency-temperature 
relation of the surface acoustic waves in a quartz crystal 

blank of three rotations, we can look for cuts with good 
thermal behavior from the known f-T function. 

 First of all, we use the known popular cuts with good f-T 
properties to validate the formulation.  With just one rotation, 
we obtained an f-T curve at constant temperature 25℃ as 
shown in Fig. 2.  It is clear that we have a cut of 𝜃 =
41.75℃, which is close to known ST-cut [2, 9].  Further 
comparison of f-T curves of two cuts is presented in Fig. 3.  
It is clear that the formulation can confirm the known results 
[10], giving the confidence to search novel cuts with certain 
requirements. 

 

Fig. 3. The f-T curves of 𝜃 = 41.75∘ and 𝜃 = 42.75∘. 

To find better cuts with the ideal cubic f-T curves, we 
now adopt the searching criteria by setting the first and 
second derivatives of the frequency function to zeroes, which 
can find cuts from two to three rotations.  After extensive 
calculations, with two rotation angles we have results shown 
in Figs. 4 and 5.  It reveals that there are two cuts with cubic 
f-T curves.  However, the inflection temperatures are 
relatively high than room temperature for most resonators, 
and the applications should be for some special cases to take 
the advantage.  The details of the f-T relations are shown in 
Fig. 6, demonstrating a rare thermal property never known in 
SAW resonators before. 

 

Fig. 4. Front view of curve of novel cuts of doubly-rotated Y-cut quartz. 



 

Fig. 5. Top view of curve of novel cuts of doubly-rotated Y-cut quartz. 

 

Fig. 6. Frequency-temperature curve of novel cuts. 

 

IV. CONCLUSIONS 

A complete formulation of the frequency-temperature 

relation of SAW in quartz crystal is presented with the 

consideration of rotation angles and the incremental thermal 

theory.  By utilizing the f-T function from the formulation, 

cuts with better f-T properties are confirmed and found.  

The formulation is validated with known results, and it can 

be extended for quartz crystal and other materials for ideal 

cuts to meet SAW resonator development requirements. 
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