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The thickness-shear vibrations of a quartz crystal plate serve as the functioning mode of a resonator with strong couplings 
to many other modes of vibrations, which can affect the frequency and mode shape, consequently the resonator properties. 
For applications, it is always desired to have pure thickness-shear vibrations that only exist in an infinite plate. With the 
three-dimensional equations of elasticity in Cartesian coordinates, boundary conditions are approximated and the 
frequency equation of the thickness-shear mode is given in terms of materials constants and plate parameters. This 
relation shows that the thickness-shear frequency can be determined with known parameters of plates. The frequency 
equation then is compared with the frequency spectra from the Mindlin plate equations for the determination of some key 
coefficients. This is an extension of our earlier study on the frequency equation of AT-cut quartz crystal plates and it will 
be used in the design of SC-cut quartz crystal resonators of rectangular shape. 
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1. INTRODUCTION 

The design of quartz crystal resonators requires accurate 
analysis of vibrations of the quartz crystal plate with 
influences of some complications like electrodes and 
mountings. With the increasingly miniaturization of 
resonators and relative increase of the effects of these 
complications, the challenge of analysis of vibration of 
quartz crystal resonator structure is increasingly tough. 
Particularly, with rise of vibration frequency and 
consequently increase of computational cost of time, 
empirical procedure based on proper selection of trial 
parameters are also in great demand. From our 
discussions with design engineers, a better prediction of 
vibration frequency and even the resonator properties 
with known parameters is urgently needed at least for 
the prototyping. To meet such needs, we started the 
resonator modeling with structural parameters by 
approximating the fundamental thickness-shear (TSh) 
frequency with a simple equation for the AT-cut quartz 
crystal plates [1]. It turned out such an approximation is 
quite accurate and useful in the initial selection of 
structural parameters. The essence of the procedure is to 
approximate the boundary conditions and the equations 
of motion of the dominant mode and a simple relation 
with the thickness and aspect ratios of the AT-cut quartz 
crystal plate is given in agreement with earlier results. 
As a further validation, the relation was confirmed from 
the straight-crested wave solutions with excellent 
agreement. Design engineers also agreed that such 

results are useful in their resonator development 
process. With this successful outcome, we are now 
ready for the extension of the frequency equation to the 
SC-cut quartz crystal plates that have stronger couplings 
of vibration modes. 

The vibrations of finite elastic plates are actually 
difficult to solve with various boundary conditions and 
wide frequency range. Fortunately, we only have 
interest in some special vibration modes e.g. thickness-
shear mode in resonator applications, so the problem can 
be simplified and solved. For instance, the resonant 
frequency of thickness-shear modes in an infinite plate 
were found by Koga [2] in closed form, but 
corresponding simple solutions are not obtained for 
finite plate. By using the perturbation method, Ekstein 
[3] approximately obtained the frequency equation of 
rectangular plate. To analyze the high frequency 
vibrations of quartz crystal plates, Mindlin developed 
the first-order equations to include the thickness-shear 
vibration mode and couplings with other modes like the 
flexural vibrations [4]. With the Mindlin plate equations, 
now it is possible to study the high frequency vibrations 
in a systematic manner [5]. 

With the introduction of the Mindlin plate theory, 
the straight-crested wave solutions are obtained and they 
have been helping design engineers with the selection of 
plate parameters. For plates with relatively larger length 
to width ratios, the straight-crested waves, implying 
neglecting the width effect of solutions, are adequate for 
typical resonator designs. Besides, the simple and 
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elegant equations also serve as a foundation for the 
development of resonator design procedure. By 
combining the three-dimensional approximation and 
Mindlin plate equations, we obtained the quadratic 
frequency equation which will be useful for practical 
applications in the resonator design. 

2. THREE-DIMENSIONAL EQUATIONS OF 
VIBRATION OF PLATES 

Vibrations of elastic solid are governed by three- 
dimension equations of elasticity, which are applicable 
to plates for further simplification. For a rectangular 
plate with coordinates shown in Fig.1, and the equations 
and notations are from Mindlin [5]. 

First, the equations of motion are 
First, the equations of motion are 
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where ௞ܶ 	(݇ = ݅)	௜ݔ，(1,2,3,4,5,6 = ݅)	௜ݑ，(1,2,3 =
1,2,3) and ݐ are stress, coordinate, displacement, and 
time, respectively.  
 

Figure 1. A rectangular plate with coordinate system 

For a SC-cut quartz plate, the constitutive equations are 

ଵܶ = ܿଵଵ ଵܵ + ܿଵଶܵଶ + ܿଵଷܵଷ + ܿଵସܵସ + ܿଵହܵହ + ܿଵ଺ܵ଺ 
ଶܶ = ܿଶଵ ଵܵ + ܿଶଶܵଶ + ܿଶଷܵଷ + ܿଶସܵସ + ܿଶହܵହ + ܿଶ଺ܵ଺ 

ଷܶ = ܿଷଵ ଵܵ + ܿଷଶܵଶ + ܿଷଷܵଷ + ܿଷସܵସ + ܿଷହܵହ + ܿଷ଺ܵ଺ 

ସܶ = ܿସଵ ଵܵ + ܿସଶܵଶ + ܿସଷܵଷ + ܿସସܵସ + ܿସହܵହ + ܿସ଺ܵ଺ 

ହܶ = ܿହଵ ଵܵ + ܿହଶܵଶ + ܿହଷܵଷ + ܿହସܵସ + ܿହହܵହ + ܿହ଺ܵ଺ 

଺ܶ = ܿ଺ଵ ଵܵ + ܿ଺ଶܵଶ + ܿ଺ଷܵଷ + ܿ଺ସܵସ + ܿ଺ହܵହ + ܿ଺଺ܵ଺ 

(2) 

where ܿ௦௧	(ݏ, ݐ = 1,2,3,4,5,6) are the elastic constants 
and strain ܵ௞	(݇ = 1,2,3,4,5,6) are 
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   (3) 

By substituting (3) and (2) into (1), we have the equation 
of motion represented in displacements 

ܿଵଵݑଵ,ଵଵ + ܿଵଶݑଶ,ଶଵ + ܿଵଷݑଷ,ଷଵ + ܿଵସ(ݑଷ,ଶଵ +  (ଶ,ଷଵݑ
+ܿଵହ(ݑଷ,ଵଵ + (ଵ,ଷଵݑ + ܿଵ଺(ݑଶ,ଵଵ +  (ଵ,ଶଵݑ

+ܿ଺ଵݑଵ,ଵଶ + ܿ଺ଶݑଶ,ଶଶ + ܿ଺ଷݑଷ,ଷଶ + ܿ଺ସ(ݑଷ,ଶଶ +  (ଶ,ଷଶݑ
+ܿ଺ହ(ݑଷ,ଵଶ + (ଵ,ଷଶݑ + ܿ଺଺(ݑଶ,ଵଶ +  (ଵ,ଶଶݑ

+ܿହଵݑଵ,ଵଷ + ܿହଶݑଶ,ଶଷ + ܿହଷݑଷ,ଷଷ + ܿହସ(ݑଷ,ଶଷ +  (ଶ,ଷଷݑ

+ܿହହ(ݑଷ,ଵଷ + (ଵ,ଷଷݑ + ܿହ଺(ݑଶ,ଵଷ + (ଵ,ଶଷݑ 	= ߩ డమ௨భ
డ௧మ   

(4) 

ܿ଺ଵݑଵ,ଵଵ + ܿ଺ଶݑଶ,ଶଵ + ܿ଺ଷݑଷ,ଷଵ + ܿ଺ସ(ݑଷ,ଶଵ +  (ଶ,ଷଵݑ
+ܿ଺ହ(ݑଷ,ଵଵ + (ଵ,ଷଵݑ + ܿ଺଺(ݑଶ,ଵଵ +  (ଵ,ଶଵݑ

+ܿଶଵݑଵ,ଵଶ + ܿଶଶݑଶ,ଶଶ + ܿଶଷݑଷ,ଷଶ + ܿଶସ(ݑଷ,ଶଶ +  (ଶ,ଷଶݑ
+ܿଶହ(ݑଷ,ଵଶ + (ଵ,ଷଶݑ + ܿଶ଺(ݑଶ,ଵଶ +  (ଵ,ଶଶݑ

+ܿସଵݑଵ,ଵଷ + ܿସଶݑଶ,ଶଷ + ܿସଷݑଷ,ଷଷ + ܿସସ(ݑଷ,ଶଷ +  (ଶ,ଷଷݑ

+ܿସହ(ݑଷ,ଵଷ + (ଵ,ଷଷݑ + ܿସ଺(ݑଶ,ଵଷ + (ଵ,ଶଷݑ = ߩ డమ௨మ
డ௧మ   

(5) 

ܿହଵݑଵ,ଵଵ + ܿହଶݑଶ,ଶଵ + ܿହଷݑଷ,ଷଵ + ܿହସ(ݑଷ,ଶଵ +  (ଶ,ଷଵݑ
+ܿହହ(ݑଷ,ଵଵ + (ଵ,ଷଵݑ + ܿହ଺(ݑଶ,ଵଵ +  (ଵ,ଶଵݑ

+ܿସଵݑଵ,ଵଶ + ܿସଶݑଶ,ଶଶ + ܿସଷݑଷ,ଷଶ + ܿସସ(ݑଷ,ଶଶ +  (ଶ,ଷଶݑ
+ܿସହ(ݑଷ,ଵଶ + (ଵ,ଷଶݑ + ܿସ଺(ݑଶ,ଵଶ +  (ଵ,ଶଶݑ

+ܿଷଵݑଵ,ଵଷ + ܿଷଶݑଶ,ଶଷ + ܿଷଷݑଷ,ଷଷ + ܿଷସ(ݑଷ,ଶଷ +  (ଶ,ଷଷݑ

+ܿଷହ(ݑଷ,ଵଷ + (ଵ,ଷଷݑ + ܿଷ଺(ݑଶ,ଵଷ + (ଵ,ଶଷݑ = ߩ డమ௨య
డ௧మ   

(6) 

 Then we assume the displacements as 

௝ݑ  =  ௝݁௜(క௫భାఎ௫మା఍௫యିఠ௧) (7)ܣ

where ܣ௝	(݆ = 1,2,3) are amplitudes and ߦ, ,ߟ ,ߞ ߱ are 
wavenumbers and frequency, respectively. 
 For further simplification, we define the 
normalized variables as 

ߗ = ఠ
ഏ
మ್ට

೎లల
ഐ

,  	ܺ = క
ഏ
మ್

,  	ܻ = ఎ
ഏ
మ್

,  

  	ܼ = ఍
ഏ
మ್

,  	ܿ௜௝ =
௖೔ೕ
௖లల

  (8) 

 With (4-8), we have the Christoffel equation 

Ωଶܣଵ = (ܿଵଵܺଶ + ܻଶ + ܿହହܼଶ + 2ܿଵ଺ܻܺ + 2ܿଵହܼܺ 

+2ܿହ଺ܻܼ)ܣଵ + (ܿଵସ + ܿହ଺)ܼܺ + (ܿଶହ + ܿସ଺)ܻܼ]ܣଶ 

+[ܿଵହܺଶ + ܿସ଺ܻଶ + ܿଷହܼଶ + (ܿଵସ + ܿହ଺)ܻܺ 

 +(ܿଵଷ + ܿହହ)ܼܺ + (ܿଷ଺ + ܿସ଺)ܻܼ]ܣଷ (9) 
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Ωଶܣଶ = [ܿଵ଺ܺଶ + ܿଶ଺ܻଶ + ܿସହܼଶ + (ܿଵଶ + 1)ܻܺ + 

(ܿଵସ + ܿହ଺)ܺ + (ܿଶହ + ܿସ଺)ܻܼ]ܣଵ + (ܺଶ + ܿଶଶܻଶ + 

ܿସସܼଶ + 2ܿଶ଺ܻܺ + 2ܿସ଺ܼܺ + 2ܿଶସܻܼ)ܣଶ + [ܿହ଺ܺଶ 

+ܿଶସܻଶ + ܿଷସܼଶ + (ܿସହ + ܿସ଺)ܻܺ + (ܿଷ଺ + ܿସହ)ܼܺ 

 +(ܿଷଷ + ܿସସ)ܻܼ]ܣଷ (10) 

Ωଶܣଷ = [ܿହଵܺଶ + ܿସ଺ܻଶ + ܿଷହܼଶ + (ܿଵସ + ܿହ଺)ܻܺ + 

(ܿଵଷ + ܿହହ)ܼܺ + (ܿସହ + ܿଷ଺)ܻܼ]ܣଵ + [ܿହ଺ܺଶ + ܿଶସܻଶ 

+ܿଷସܼଶ + (ܿଶହ + ܿସ଺)ܻܺ + (ܿସହ + ܿଷ଺)ܼܺ 

+(ܿଶଷ + ܿସସ)ܻܼ]ܣଶ + [ܿହହܺଶ + ܿସସܻଶ + ܿଷଷܼଶ 

 +2ܿସହܻܺ + 2ܿଷହܼܺ + 2ܿଷସܻܼ]ܣଷ (11) 

They show the relationship of frequency, wave numbers 
and amplitudes of travelling waves. 

3. FREQUENCY EQUATION OF THICKNESS-
SHEAR VIBRATIONS OF PLATES 

Now we shall consider the boundary conditions, the 
relationship of wavenumber and size of plate, then 
substituting them into Christoffel equation to obtain 
frequency equation.  
 First, the traction-free boundary condition can be 
written as 

 ଵܶ = ହܶ = ଺ܶ = ଵݔ  ,0 = ±ܽ (12) 

 ଶܶ = ସܶ = ଺ܶ = ଶݔ  ,0 = ±ܾ (13) 

 ଷܶ = ସܶ = ହܶ = ଷݔ  ,0 = ±ܿ (14) 

where ܽ, ܾ, ܿ are the half-length, thickness and width 
of the plate in Fig. 1. The problem is now to find 
displacements, which will satisfy the traction-free 
boundary condition. 
 Apparently, there are not displacement precisely 
satisfy the boundary conditions and equations. Because 
thickness-shear mode is the major mode we are 
concerned in a quartz crystal resonator, we only consider 
the displacement of this particular mode.  To satisfy the 
boundary conditions in a precise manner, we ignore all 
other displacements. As a result, we assume the 
displacement of thickness-shear mode [6-8] as 

ଵݑ  = ଵܣ cos ଵݔߦ sin ଶݔߟ cos  ଷ (15)ݔߞ

By substituting (15) into the boundary conditions of (13), 
we only have the stress component T6 left for 
consideration.  The major condition is the vanish of T6, 
and other conditions can be neglected. As a result, we 
must have 

−ܿ଺ଵߦ sin ଵݔߦ sin ܾߟ cos ଷݔߞ − ܿ଺ହߞ cos ଵݔߦ sin ܾߟ ∗ 
 sin ଷݔߞ + ܿ଺଺ߦߟ cos ଵݔߦ cos ܾߟ cos ଷݔߞ = 0 (16) 

Obviously, the solution does not exist from above 
equation.  But knowing that ܿ଺ଵ  and ܿ଺ହ  are much 

smaller than ܿ଺଺, we can have the boundary equation 
further simplified to: 

 cos ܾߟ = 0 (17) 

or 

ߟ  = ௡గ
ଶ௕ 							(݊ = 1,3,5… ) (18) 

for the antisymmetric thickness deformation. Through 
the normalization of (18), we have 

 ܻ = 	ఎ
ഏ
మ್
= ݊ (19) 

 Now we turn to the two faces at ends of plate in the 
length direction. Because only displacement ݑଵ  is 
considered, the dominant boundary condition will now 
be ଵܶ = 0. With the constitutive relations in (2), and 
neglect ܿଵହ and ܿଵ଺ since they are much smaller than 
ܿଵଵ, we have 

 sin ܽߦ = 0 (20) 

or 

ߦ  = ௠గ
௔ 							(݉ = 1,2,3… ) (21) 

Again, through normalization of (21) we have 

 ܺ = క
ഏ
మ್
= ଶ௕௠

௔ 							(݉ = 1,2,3… ) (22) 

 Third, on the two faces at ends of width direction, 
also only the condition ହܶ = 0 is required, and neglect 
ܿହଵ, ܿହ଺ again, we have 

 sin ܿߞ = 0 (23) 

or 

ߞ  = ௟గ
௖ 								(݈ = 1,2,3… ) (24) 

then the normalized wavenumber is 

 ܼ = ఍
ഏ
మ್
= ଶ௕௟

௖ 		(݈ = 1,2,3… ) (25) 

 Now we substitute (17), (20), and (23) into 
frequency equation (9), we have 

ଶߗ = ଴݊ଶܥ + ଵܥ ଶ௠௡௕௔ + ଶܥ ቀଶ௠௕௔ ቁ
ଶ
+ ଷܥ ቀଶ௠௕௔ ቁ ቀଶ௟௕௖ ቁ  

ସܥ+  ଶ௡௟௕௖ + ହܥ ቀଶ௕௟௖ ቁ
ଶ
  (26) 

where  

଴ܥ  = 1 + ܿଶ଺ ஺మ஺భ + ܿସ଺ ஺య஺భ  (27) 

ଵܥ  = 2ܿଵ଺ + (1 + ܿଵଶ) ஺మ஺భ + (ܿଵସ + ܿହ଺) ஺య஺భ (28) 

ଶܥ  = ܿଵଵ + ܿଵ଺ ஺మ஺భ + ܿଵହ ஺య஺భ (29) 
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ଷܥ  = 2ܿଵହ + (ܿଵସ + ܿହ଺) ஺మ஺భ + (ܿଵଷ + ܿହହ) ஺య஺భ (30) 

ସܥ  = 2ܿହ଺ + (ܿଶହ + ܿସ଺) ஺మ஺భ + (ܿଷ଺ + ܿସ଺) ஺య஺భ (31) 

ହܥ  = ܿହହ + ܿସହ ஺మ஺భ + ܿଷହ ஺య஺భ (32) 

Because thickness-shear mode is the major mode in 
quartz resonator, it’s amplitude ܣଵ  should be much 
greater than ܣଶ ଷܣ , , and ܽ ≫ ܾ , ܾ ≫ ܿ  in the real 
resonator. The right side terms except the first one in 
(24) can be thought as infinitesimal, so based on the 
Taylor expansion, the extraction of the root of (24) will 
be 

ߗ = ඥܥ଴ + ଵ
ଶඥ஼బ

∗ ൬ܥଵ ଶ௠௡௕௔ + ଶܥ ቀଶ௠௕௔ ቁ
ଶ
+  

ଷܥ  ቀଶ௠௕௔ ቁ ቀଶ௟௕௖ ቁ + ସܥ ଶ௡௟௕௖ + ହܥ ቀଶ௕௟௖ ቁ
ଶ
൰ (33) 

This is the vibration frequency equation of thickness-
shear mode in an SC-cut quartz crystal plate, it is 
important in designing the quartz resonators. 
Furthermore, set ݉ = ݊ = 1 , ݈ = 0 , (33) can be 
simplified as  

ߗ  = ଴ܤ + ଵܤ ௕௔ + ଶܤ ቀ௕௔ቁ
ଶ
 (34) 

where ܤ௜ is the coefficient in (33), which contain the 
ratio of amplitudes and elastic constants. From (34), the 
vibration frequency equation of thickness-shear mode of 
SC-cut quartz plates has a simple form which is a 
quadratic function, and it is coincident with the equation 
of AT-cut quartz. Through Mindlin plate theory, the 
frequency spectrum [9] that considered thickness-shear 
and flexural deformation has been calculated already in 
Fig. 2 with the thickness-shear mode is the dominant 
mode appeared in the midpoint of the flat portion, which 
is denoted by circles. Then, the validity of the frequency 
equation is confirmed by fitting those circles with the 
equation (34). We find the correlation coefficient R-
square is equal to 0.9993, which is very close to 1, 
representing an excellent fitting. 

 
Figure 2.  Frequency spectrum of a SC-cut quartz 
plate with thickness-shear and flexural deformation 

Although the frequency equation has a simple form 

to use by design engineers, some problems need to be 
addressed. First, this equation is suitable for plates 
which only consider the vibration of thickness-shear 
mode. Second, the size of the plate must be satisfied that 
length is much greater than width and the width also 
much greater than thickness. Third, only quartz crystal 
of SC-cut is considered, and the result may be changed 
because the different constitutive equation caused by 
different material constants. Finally, the real resonant 
frequency is discrete in Fig. 2, but it is continuous in 
frequency equation, so engineers need to valid the point 
in frequency equation whether it is real frequency by a 
lot of tests.  

4.  CONCLUSIONS 

We have obtained the quadratic polynomial in length to 
thickness rations for the accurate estimation of the 
thickness-shear frequency.  The frequency has been 
validated with accurate TSh frequencies from the 
coupled equations of TSh and flexural vibrations with 
the Mindlin plate equations.  Such results will be 
useful in the selection of aspect ratios of SC-cut 
rectangular resonators. 
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